【机器学习】简单线性回归模型及其python实现

简单线性回归模型

  • 使用单一特征来预测响应值。假设自变量与因变量是线性相关的,找到一线性函数进行预测。
  • 利用最小二乘法来寻找最佳的拟合线。

Step 1 数据预处理
  • 导入数据集
  • 处理缺失数据
  • 划分数据集
import pandas as pd
from sklearn.model_selection import train_test_split

dataset = pd.read_csv('studentscores.csv')
X = dataset.iloc[ : ,  : 1 ].values
Y = dataset.iloc[ : , 1].values
X_train, X_test, Y_train, Y_test = train_test_split(X,Y,test_size=1/4,random_state=0)


Step 2 利用简单线性回归模型训练

我们使用sklearn.linear_model库中的LinearRegression类的fit()方法,将regressor对象对数据集进行训练。

from sklearn.linear_model import LinearRegression
regressor = LinearRegression()
regressor = regressor.fit(X_train, Y_train)

Step 3 预测结果

预测测试集的观察结果,将输出保存至Y_pred。
我们利用LinearRegression类的预测方法进行预测。

Y_pred = regressor.predict(X_test)

Step 4 可视化

我们使用matplotlib.pyplot库对我们的训练集结果和测试集结果绘制散点图。

plt.scatter(X_train , Y_train, color = 'red')
plt.plot(X_train , regressor.predict(X_train), color ='blue')
plt.show()

plt.scatter(X_test , Y_test, color = 'red')
plt.plot(X_test , regressor.predict(X_test), color ='blue')
plt.show()

参考链接

100-Days-Of-ML-Code

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值