简单线性回归模型
- 使用单一特征来预测响应值。假设自变量与因变量是线性相关的,找到一线性函数进行预测。
- 利用最小二乘法来寻找最佳的拟合线。
Step 1 数据预处理
- 导入数据集
- 处理缺失数据
- 划分数据集
import pandas as pd
from sklearn.model_selection import train_test_split
dataset = pd.read_csv('studentscores.csv')
X = dataset.iloc[ : , : 1 ].values
Y = dataset.iloc[ : , 1].values
X_train, X_test, Y_train, Y_test = train_test_split(X,Y,test_size=1/4,random_state=0)
Step 2 利用简单线性回归模型训练
我们使用sklearn.linear_model库中的LinearRegression类的fit()方法,将regressor对象对数据集进行训练。
from sklearn.linear_model import LinearRegression
regressor = LinearRegression()
regressor = regressor.fit(X_train, Y_train)
Step 3 预测结果
预测测试集的观察结果,将输出保存至Y_pred。
我们利用LinearRegression类的预测方法进行预测。
Y_pred = regressor.predict(X_test)
Step 4 可视化
我们使用matplotlib.pyplot库对我们的训练集结果和测试集结果绘制散点图。
plt.scatter(X_train , Y_train, color = 'red')
plt.plot(X_train , regressor.predict(X_train), color ='blue')
plt.show()
plt.scatter(X_test , Y_test, color = 'red')
plt.plot(X_test , regressor.predict(X_test), color ='blue')
plt.show()