452. 用最少数量的箭引爆气球
在二维空间中有许多球形的气球。对于每个气球,提供的输入是水平方向上,气球直径的开始和结束坐标。由于它是水平的,所以y坐标并不重要,因此只要知道开始和结束的x坐标就足够了。开始坐标总是小于结束坐标。平面内最多存在104个气球。
一支弓箭可以沿着x轴从不同点完全垂直地射出。在坐标x处射出一支箭,若有一个气球的直径的开始和结束坐标为 xstart,xend, 且满足 xstart ≤ x ≤ xend,则该气球会被引爆。可以射出的弓箭的数量没有限制。 弓箭一旦被射出之后,可以无限地前进。我们想找到使得所有气球全部被引爆,所需的弓箭的最小数量。
Example:
输入:
[[10,16], [2,8], [1,6], [7,12]]
输出:
2
解释:
对于该样例,我们可以在x = 6(射爆[2,8],[1,6]两个气球)和 x = 11(射爆另外两个气球)。
这道题和上一道题的思路是类似的,只不过这里需要的是找到一个可以引爆的区域,看之后的气球是否在这个区域。435. 无重叠区间
class Solution:
def findMinArrowShots(self, points: List[List[int]]) -> int:
if not points:return 0
points.sort(key = lambda x: x[1])
print(points)
res = []
cnt = 0
for item in points:
if not res:
res.append(item)
else:
if item[0] <= res[-1][1]:#如果一个本次的开始小于等于前一个的截至
res.append((item[0],res[-1][1]))#那么将这个可爆炸区域加入res
else:
cnt += 1#如果不能引爆,则射击次数加一
res.append(item)
return cnt+1
上面使用了一个res来存储每一的可引爆区域或者是下一个不能引爆的气球区域,下面这种方法更加简洁。直接每次就不考虑引爆区域,每次更新的是引爆区域的右边界,下一个气球的左边界和可引爆区域的右边界进行对比。
class Solution:
def findMinArrowShots(self, points: List[List[int]]) -> int:
if not points:return 0
points.sort(key = lambda x: x[1])
x_end = points[0][1]#可引爆区域的右边界
cnt = 0
for item in points[1:]:
if item[0] > x_end:#如果下一个气球的左边界大于可引爆区域的右边界,则射击次数加一
cnt += 1
x_end = item[1]
return cnt+1