剑指 Offer 59 - II. 队列的最大值
请定义一个队列并实现函数 max_value 得到队列里的最大值,要求函数max_value、push_back 和 pop_front 的均摊时间复杂度都是O(1)。
若队列为空,pop_front 和 max_value 需要返回 -1
示例 1:
输入:
[“MaxQueue”,“push_back”,“push_back”,“max_value”,“pop_front”,“max_value”]
[[],[1],[2],[],[],[]]
输出: [null,null,null,2,1,2]
示例 2:
输入:
[“MaxQueue”,“pop_front”,“max_value”]
[[],[],[]]
输出: [null,-1,-1]
限制:
1 <= push_back,pop_front,max_value的总操作数 <= 10000
1 <= value <= 10^5
这道题的思路和上一道题剑指 Offer 59 - I. 滑动窗口的最大值思路是类似的,都是维护一个递减的队列。这里也是一样,只需要建立一个双向队列来存储当前字段的一个递减的列表。
有以下几种情况:
- 由于我们维护的是一个递减的队列,如果待加入的数大于我们辅助队列的最后一个值,那么我们就要pop()队列的最后一个值
- 在主队列pop的时候,如果此时popleft()的是当前的队列内的最大值,即辅助队列的第一个元数,那么我们的辅助队列的第一个元数也应该跟着popleft()。
- 如果此时主队列pop的不是当前辅助队列的最大元数,那么辅助队列就不需要popleft(),因为其还是剩余的队列内的最大值。
class MaxQueue:
def __init__(self):
self.queue = collections.deque()
self.maxv = collections.deque()
def max_value(self) -> int:
if self.maxv:
return self.maxv[0]
else:
return -1
def push_back(self, value: int) -> None:
self.queue.append(value)
while self.maxv and self.maxv[-1] < value:#辅助队列维护一个递减队列
self.maxv.pop()
self.maxv.append(value)
def pop_front(self) -> int:
if self.queue:
temp = self.queue.popleft()
if temp == self.maxv[0]:#当主队列弹出的是辅助队列内部的最大值的时候,辅助队列才popleft()
self.maxv.popleft()
return temp
else:
return -1
# Your MaxQueue object will be instantiated and called as such:
# obj = MaxQueue()
# param_1 = obj.max_value()
# obj.push_back(value)
# param_3 = obj.pop_front()