电商数仓项目(二)
五. 数仓搭建-DWS层
1.业务术语
--1.用户
用户以设备为判断标准,在移动统计中,每个独立设备认为是一个独立用户。Android系统根据IMEI号,IOS系统根据OpenUDID来标识一个独立用户,每部手机一个用户。
--2.新增用户
首次联网使用应用的用户。如果一个用户首次打开某APP,那这个用户定义为新增用户;卸载再安装的设备,不会被算作一次新增。新增用户包括日新增用户、周新增用户、月新增用户。
--3.活跃用户
打开应用的用户即为活跃用户,不考虑用户的使用情况。每天一台设备打开多次会被计为一个活跃用户。
--4.周(月)活跃用户
某个自然周(月)内启动过应用的用户,该周(月)内的多次启动只记一个活跃用户。
--5.月活跃率
月活跃用户与截止到该月累计的用户总和之间的比例。
--6.沉默用户
用户仅在安装当天(次日)启动一次,后续时间无再启动行为。该指标可以反映新增用户质量和用户与APP的匹配程度。
--7.版本分布
不同版本的周内各天新增用户数,活跃用户数和启动次数。利于判断APP各个版本之间的优劣和用户行为习惯。
--8.本周回流用户
上周未启动过应用,本周启动了应用的用户。
--9.连续n周活跃用户
连续n周,每周至少启动一次。
--10.忠诚用户
连续活跃5周以上的用户
--11.连续活跃用户
连续2周及以上活跃的用户
--12.近期流失用户
连续n(2<= n <= 4)周没有启动应用的用户。(第n+1周没有启动过)
--13.留存用户
某段时间内的新增用户,经过一段时间后,仍然使用应用的被认作是留存用户;这部分用户占当时新增用户的比例即是留存率。
例如,5月份新增用户200,这200人在6月份启动过应用的有100人,7月份启动过应用的有80人,8月份启动过应用的有50人;则5月份新增用户一个月后的留存率是50%,二个月后的留存率是40%,三个月后的留存率是25%。
--14.用户新鲜度
每天启动应用的新老用户比例,即新增用户数占活跃用户数的比例。
--15.单次使用时长
每次启动使用的时间长度。
--16.日使用时长
累计一天内的使用时间长度。
--17.启动次数计算标准
IOS平台应用退到后台就算一次独立的启动;Android平台我们规定,两次启动之间的间隔小于30秒,被计算一次启动。用户在使用过程中,若因收发短信或接电话等退出应用30秒又再次返回应用中,那这两次行为应该是延续而非独立的,所以可以被算作一次使用行为,即一次启动。业内大多使用30秒这个标准,但用户还是可以自定义此时间间隔。
2.系统函数
1.nvl函数
1.基本语法
NVL(表达式1,表达式2)
如果表达式1为空值,NVL返回值为表达式2的值,否则返回表达式1的值。
该函数的目的是把一个空值(null)转换成一个实际的值。其表达式的值可以是数字型、字符型和日期型。但是表达式1和表达式2的数据类型必须为同一个类型。
2.案例实操
select nvl(1,0);
1
hive (gmall)> select nvl(null,"hello");
hello
2.日期处理函数
1.date_format函数(根据格式整理日期)
select date_format('2020-06-14','yyyy-MM');
2020-06
2.date_add函数(加减日期)
select date_add('2020-06-14',-1);
2020-06-13
select date_add('2020-06-14',1);
2020-06-15
3.next_day函数
1.取当前天的下一个周一
select next_day('2020-06-14','MO');
2020-06-15
说明:星期一到星期日的英文(Monday,Tuesday、Wednesday、Thursday、Friday、Saturday、Sunday)
2.取当前周的周一
select date_add(next_day('2020-06-14','MO'),-7);
2020-06-8
4.last_day函数(求当月最后一天日期)
select last_day('2020-06-14');
2020-06-30
3. 复杂数据类型定义
1.map结构数据定义
map<string,string>
2.array结构数据定义
array<string>
3.struct结构数据定义
struct<id:int,name:string,age:int>
4.struct和array嵌套定义
array<struct<id:int,name:string,age:int>>
3. DWS层
1. 每日设备行为
每日设备行为,主要按照设备id统计
1.建表语句
create external table dws_uv_detail_daycount
(
`mid_id` string COMMENT '设备id',
`brand` string COMMENT '手机品牌',
`model` string COMMENT '手机型号',
`login_count` bigint COMMENT '活跃次数',
`page_stats` array<struct<page_id:string,page_count:bigint>> COMMENT '页面访问统计'
) COMMENT '每日设备行为表'
partitioned by(dt string)
stored as parquet
location '/warehouse/gmall/dws/dws_uv_detail_daycount'
tblproperties ("parquet.compression"="lzo");
2.数据装载
with
tmp_start as
(
select
mid_id,
brand,
model,
count(*) login_count
from dwd_start_log
where dt='2020-06-14'
group by mid_id,brand,model
),
tmp_page as
(
select
mid_id,
brand,
model, collect_set(named_struct('page_id',page_id,'page_count',page_count)) page_stats
from
(
select
mid_id,
brand,
model,
page_id,
count(*) page_count
from dwd_page_log
where dt='2020-06-14'
group by mid_id,brand,model,page_id
)tmp
group by mid_id,brand,model
)
insert overwrite table dws_uv_detail_daycount partition(dt='2020-06-14')
select
nvl(tmp_start.mid_id,tmp_page.mid_id),
nvl(tmp_start.brand,tmp_page.brand),
nvl(tmp_start.model,tmp_page.model),
tmp_start.login_count,
tmp_page.page_stats
from tmp_start
full outer join tmp_page
on tmp_start.mid_id=tmp_page.mid_id
and tmp_start.brand=tmp_page.brand
and tmp_start.model=tmp_page.model;
2.每日会员行为
1.建表语句
create external table dws_user_action_daycount
(
user_id string comment '用户 id',
login_count bigint comment '登录次数',
cart_count bigint comment '加入购物车次数',
order_count bigint comment '下单次数',
order_amount decimal(16,2) comment '下单金额',
payment_count bigint comment '支付次数',
payment_amount decimal(16,2) comment '支付金额',
order_detail_stats array<struct<sku_id:string,sku_num:bigint,order_count:bigint,order_amount:decimal(20,2)>> comment '下单明细统计'
) COMMENT '每日会员行为'
PARTITIONED BY (`dt` string)
stored as parquet
location '/warehouse/gmall/dws/dws_user_action_daycount/'
tblproperties ("parquet.compression"="lzo");
2.数据装载
with
tmp_login as
(
select
user_id,
count(*) login_count
from dwd_start_log
where dt='2020-06-14'
and user_id is not null
group by user_id
),
tmp_cart as
(
select
user_id,
count(*) cart_count
from dwd_action_log
where dt='2020-06-14'
and user_id is not null
and action_id='cart_add'
group by user_id
),tmp_order as
(
select
user_id,
count(*) order_count,
sum(final_total_amount) order_amount
from dwd_fact_order_info
where dt='2020-06-14'
group by user_id
) ,
tmp_payment as
(
select
user_id,
count(*) payment_count,
sum(payment_amount) payment_amount
from dwd_fact_payment_info
where dt='2020-06-14'
group by user_id
),
tmp_order_detail as
(
select
user_id,
collect_set(named_struct('sku_id',sku_id,'sku_num',sku_num,'order_count',order_count,'order_amount',order_amount)) order_stats
from
(
select
user_id,
sku_id,
sum(sku_num) sku_num,
count(*) order_count,
cast(sum(final_amount_d) as decimal(20,2)) order_amount
from dwd_fact_order_detail
where dt='2020-06-14'
group by user_id,sku_id
)tmp
group by user_id
)
insert overwrite table dws_user_action_daycount partition(dt='2020-06-14')
select
tmp_login.user_id,
login_count,
nvl(cart_count,0),
nvl(order_count,0),
nvl(order_amount,0.0),
nvl(payment_count,0),
nvl(payment_amount,0.0),
order_stats
from tmp_login
left join tmp_cart on tmp_login.user_id=tmp_cart.user_id
left join tmp_order on tmp_login.user_id=tmp_order.user_id
left join tmp_payment on tmp_login.user_id=tmp_payment.user_id
left join tmp_order_detail on tmp_login.user_id=tmp_order_detail.user_id;
3)
3.每日商品行为
1.建表语句
create external table dws_sku_action_daycount
(
sku_id string comment 'sku_id',
order_count bigint comment '被下单次数',
order_num bigint comment '被下单件数',
order_amount decimal(16,2) comment '被下单金额',
payment_count bigint comment '被支付次数',
payment_num bigint comment '被支付件数',
payment_amount decimal(16,2) comment '被支付金额',
refund_count bigint comment '被退款次数',
refund_num bigint comment '被退款件数',
refund_amount decimal(16,2) comment '被退款金额',
cart_count bigint comment '被加入购物车次数',
favor_count bigint comment '被收藏次数',
appraise_good_count bigint comment '好评数',
appraise_mid_count bigint comment '中评数',
appraise_bad_count bigint comment '差评数',
appraise_default_count bigint comment '默认评价数'
) COMMENT '每日商品行为'
PARTITIONED BY (`dt` string)
stored as parquet
location '/warehouse/gmall/dws/dws_sku_action_daycount/'
tblproperties ("parquet.compression"="lzo");
2.数据装载
注意:如果是23点59下单,支付日期跨天。需要从订单详情里面取出支付时间是今天,且订单时间是昨天或者今天的订单。
with
tmp_order as
(
select
sku_id,
count(*) order_count,
sum(sku_num) order_num,
sum(final_amount_d) order_amount
from dwd_fact_order_detail
where dt='2020-06-14'
group by sku_id
),
tmp_payment as
(
select
sku_id,
count(*) payment_count,
sum(sku_num) payment_num,
sum(final_amount_d) payment_amount
from dwd_fact_order_detail
where (dt='2020-06-14' or dt=date_add('2020-06-14',-1))
and order_id in
(
select
order_id
from dwd_fact_payment_info
where dt='2020-06-14'
)
group by sku_id
),
tmp_refund as
(
select
sku_id,
count(*) refund_count,
sum(refund_num) refund_num,
sum(refund_amount) refund_amount
from dwd_fact_order_refund_info
where dt='2020-06-14'
group by sku_id
),
tmp_cart as
(
select
item sku_id,
count(*) cart_count
from dwd_action_log
where dt='2020-06-14'
and user_id is not null
and action_id='cart_add'
group by item
),
tmp_favor as
(
select
item sku_id,
count(*) favor_count
from dwd_action_log
where dt='2020-06-14'
and user_id is not null
and action_id='favor_add'
group by item
),
tmp_appraise as
(
select
sku_id,
sum(if(appraise='1201',1,0)) appraise_good_count,
sum(if(appraise='1202',1,0)) appraise_mid_count,
sum(if(appraise='1203',1,0)) appraise_bad_count,
sum(if(appraise='1204',1,0)) appraise_default_count
from dwd_fact_comment_info
where dt='2020-06-14'
group by sku_id
)
insert overwrite table dws_sku_action_daycount partition(dt='2020-06-14')
select
sku_id,
sum(order_count),
sum(order_num),
sum(order_amount),
sum(payment_count),
sum(payment_num),
sum(payment_amount),
sum(refund_count),
sum(refund_num),
sum(refund_amount),
sum(cart_count),
sum(favor_count),
sum(appraise_good_count),
sum(appraise_mid_count),
sum(appraise_bad_count),
sum(appraise_default_count)
from
(
select
sku_id,
order_count,
order_num,
order_amount,
0 payment_count,
0 payment_num,
0 payment_amount,
0 refund_count,
0 refund_num,
0 refund_amount,
0 cart_count,
0 favor_count,
0 appraise_good_count,
0 appraise_mid_count,
0 appraise_bad_count,
0 appraise_default_count
from tmp_order
union all
select
sku_id,
0 order_count,
0 order_num,
0 order_amount,
payment_count,
payment_num,
payment_amount,
0 refund_count,
0 refund_num,
0 refund_amount,
0 cart_count,
0 favor_count,
0 appraise_good_count,
0 appraise_mid_count,
0 appraise_bad_count,
0 appraise_default_count
from tmp_payment
union all
select
sku_id,
0 order_count,
0 order_num,
0 order_amount,
0 payment_count,
0 payment_num,
0 payment_amount,
refund_count,
refund_num,
refund_amount,
0 cart_count,
0 favor_count,
0 appraise_good_count,
0 appraise_mid_count,
0 appraise_bad_count,
0 appraise_default_count
from tmp_refund
union all
select
sku_id,
0 order_count,
0 order_num,
0 order_amount,
0 payment_count,
0 payment_num,
0 payment_amount,
0 refund_count,
0 refund_num,
0 refund_amount,
cart_count,
0 favor_count,
0 appraise_good_count,
0 appraise_mid_count,
0 appraise_bad_count,
0 appraise_default_count
from tmp_cart
union all
select
sku_id,
0 order_count,
0 order_num,
0 order_amount,
0 payment_count,
0 payment_num,
0 payment_amount,
0 refund_count,
0 refund_num,
0 refund_amount,
0 cart_count,
favor_count,
0 appraise_good_count,
0 appraise_mid_count,
0 appraise_bad_count,
0 appraise_default_count
from tmp_favor
union all
select
sku_id,
0 order_count,
0 order_num,
0 order_amount,
0 payment_count,
0 payment_num,
0 payment_amount,
0 refund_count,
0 refund_num,
0 refund_amount,
0 cart_count,
0 favor_count,
appraise_good_count,
appraise_mid_count,
appraise_bad_count,
appraise_default_count
from tmp_appraise
)tmp
group by sku_id;
4.每日活动统计
1.建表语句
create external table dws_activity_info_daycount(
`id` string COMMENT '编号',
`activity_name` string COMMENT '活动名称',
`activity_type` string COMMENT '活动类型',
`start_time` string COMMENT '开始时间',
`end_time` string COMMENT '结束时间',
`create_time` string COMMENT '创建时间',
`display_count` bigint COMMENT '曝光次数',
`order_count` bigint COMMENT '下单次数',
`order_amount` decimal(20,2) COMMENT '下单金额',
`payment_count` bigint COMMENT '支付次数',
`payment_amount` decimal(20,2) COMMENT '支付金额'
) COMMENT '每日活动统计'
PARTITIONED BY (`dt` string)
stored as parquet
location '/warehouse/gmall/dws/dws_activity_info_daycount/'
tblproperties ("parquet.compression"="lzo");
2.数据装载
with
tmp_op as
(
select
activity_id,
sum(if(date_format(create_time,'yyyy-MM-dd')='2020-06-14',1,0)) order_count,
sum(if(date_format(create_time,'yyyy-MM-dd')='2020-06-14',final_total_amount,0)) order_amount,
sum(if(date_format(payment_time,'yyyy-MM-dd')='2020-06-14',1,0)) payment_count,
sum(if(date_format(payment_time,'yyyy-MM-dd')='2020-06-14',final_total_amount,0)) payment_amount
from dwd_fact_order_info
where (dt='2020-06-14' or dt=date_add('2020-06-14',-1))
and activity_id is not null
group by activity_id
),
tmp_display as
(
select
item activity_id,
count(*) display_count
from dwd_display_log
where dt='2020-06-14'
and item_type='activity_id'
group by item
),
tmp_activity as
(
select
*
from dwd_dim_activity_info
where dt='2020-06-14'
)
insert overwrite table dws_activity_info_daycount partition(dt='2020-06-14')
select
nvl(tmp_op.activity_id,tmp_display.activity_id),
tmp_activity.activity_name,
tmp_activity.activity_type,
tmp_activity.start_time,
tmp_activity.end_time,
tmp_activity.create_time,
tmp_display.display_count,
tmp_op.order_count,
tmp_op.order_amount,
tmp_op.payment_count,
tmp_op.payment_amount
from tmp_op
full outer join tmp_display on tmp_op.activity_id=tmp_display.activity_id
left join tmp_activity on nvl(tmp_op.activity_id,tmp_display.activity_id)=tmp_activity.id;
5.每日地区统计
1.建表语句
create external table dws_area_stats_daycount(
`id` bigint COMMENT '编号',
`province_name` string COMMENT '省份名称',
`area_code` string COMMENT '地区编码',
`iso_code` string COMMENT 'iso编码',
`region_id` string COMMENT '地区ID',
`region_name` string COMMENT '地区名称',
`login_count` string COMMENT '活跃设备数',
`order_count` bigint COMMENT '下单次数',
`order_amount` decimal(20,2) COMMENT '下单金额',
`payment_count` bigint COMMENT '支付次数',
`payment_amount` decimal(20,2) COMMENT '支付金额'
) COMMENT '每日地区统计表'
PARTITIONED BY (`dt` string)
stored as parquet
location '/warehouse/gmall/dws/dws_area_stats_daycount/'
tblproperties ("parquet.compression"="lzo");
2.数据装载
with
tmp_login as
(
select
area_code,
count(*) login_count
from dwd_start_log
where dt='2020-06-14'
group by area_code
),
tmp_op as
(
select
province_id,
sum(if(date_format(create_time,'yyyy-MM-dd')='2020-06-14',1,0)) order_count,
sum(if(date_format(create_time,'yyyy-MM-dd')='2020-06-14',final_total_amount,0)) order_amount,
sum(if(date_format(payment_time,'yyyy-MM-dd')='2020-06-14',1,0)) payment_count,
sum(if(date_format(payment_time,'yyyy-MM-dd')='2020-06-14',final_total_amount,0)) payment_amount
from dwd_fact_order_info
where (dt='2020-06-14' or dt=date_add('2020-06-14',-1))
group by province_id
)
insert overwrite table dws_area_stats_daycount partition(dt='2020-06-14')
select
pro.id,
pro.province_name,
pro.area_code,
pro.iso_code,
pro.region_id,
pro.region_name,
nvl(tmp_login.login_count,0),
nvl(tmp_op.order_count,0),
nvl(tmp_op.order_amount,0.0),
nvl(tmp_op.payment_count,0),
nvl(tmp_op.payment_amount,0.0)
from dwd_dim_base_province pro
left join tmp_login on pro.area_code=tmp_login.area_code
left join tmp_op on pro.id=tmp_op.province_id;
4.DWS层数据导入脚本
1.在/home/atguigu/bin目录下创建脚本dwd_to_dws.sh
vim dwd_to_dws.sh
2.在脚本中填写如下内容
#!/bin/bash
APP=gmall
hive=/opt/module/hive/bin/hive
# 如果是输入的日期按照取输入日期;如果没输入日期取当前时间的前一天
if [ -n "$1" ] ;then
do_date=$1
else
do_date=`date -d "-1 day" +%F`
fi
sql="
set mapreduce.job.queuename=hive;
with
tmp_start as
(
select
mid_id,
brand,
model,
count(*) login_count
from ${APP}.dwd_start_log
where dt='$do_date'
group by mid_id,brand,model
),
tmp_page as
(
select
mid_id,
brand,
model,
collect_set(named_struct('page_id',page_id,'page_count',page_count)) page_stats
from
(
select
mid_id,
brand,
model,
page_id,
count(*) page_count
from ${APP}.dwd_page_log
where dt='$do_date'
group by mid_id,brand,model,page_id
)tmp
group by mid_id,brand,model
)
insert overwrite table ${APP}.dws_uv_detail_daycount partition(dt='$do_date')
select
nvl(tmp_start.mid_id,tmp_page.mid_id),
nvl(tmp_start.brand,tmp_page.brand),
nvl(tmp_start.model,tmp_page.model),
tmp_start.login_count,
tmp_page.page_stats
from tmp_start
full outer join tmp_page
on tmp_start.mid_id=tmp_page.mid_id
and tmp_start.brand=tmp_page.brand
and tmp_start.model=tmp_page.model;
with
tmp_login as
(
select
user_id,
count(*) login_count
from ${APP}.dwd_start_log
where dt='$do_date'
and user_id is not null
group by user_id
),
tmp_cart as
(
select
user_id,
count(*) cart_count
from ${APP}.dwd_action_log
where dt='$do_date'
and user_id is not null
and action_id='cart_add'
group by user_id
),tmp_order as
(
select
user_id,
count(*) order_count,
sum(final_total_amount) order_amount
from ${APP}.dwd_fact_order_info
where dt='$do_date'
group by user_id
) ,
tmp_payment as
(
select
user_id,
count(*) payment_count,
sum(payment_amount) payment_amount
from ${APP}.dwd_fact_payment_info
where dt='$do_date'
group by user_id
),
tmp_order_detail as
(
select
user_id,
collect_set(named_struct('sku_id',sku_id,'sku_num',sku_num,'order_count',order_count,'order_amount',order_amount)) order_stats
from
(
select
user_id,
sku_id,
sum(sku_num) sku_num,
count(*) order_count,
cast(sum(final_amount_d) as decimal(20,2)) order_amount
from ${APP}.dwd_fact_order_detail
where dt='$do_date'
group by user_id,sku_id
)tmp
group by user_id
)
insert overwrite table ${APP}.dws_user_action_daycount partition(dt='$do_date')
select
tmp_login.user_id,
login_count,
nvl(cart_count,0),
nvl(order_count,0),
nvl(order_amount,0.0),
nvl(payment_count,0),
nvl(payment_amount,0.0),
order_stats
from tmp_login
left outer join tmp_cart on tmp_login.user_id=tmp_cart.user_id
left outer join tmp_order on tmp_login.user_id=tmp_order.user_id
left outer join tmp_payment on tmp_login.user_id=tmp_payment.user_id
left outer join tmp_order_detail on tmp_login.user_id=tmp_order_detail.user_id;
with
tmp_order as
(
select
sku_id,
count(*) order_count,
sum(sku_num) order_num,
sum(final_amount_d) order_amount
from ${APP}.dwd_fact_order_detail
where dt='$do_date'
group by sku_id
),
tmp_payment as
(
select
sku_id,
count(*) payment_count,
sum(sku_num) payment_num,
sum(final_amount_d) payment_amount
from ${APP}.dwd_fact_order_detail
where (dt='$do_date' or dt=date_add('$do_date',-1))
and order_id in
(
select
order_id
from ${APP}.dwd_fact_payment_info
where dt='$do_date'
)
group by sku_id
),
tmp_refund as
(
select
sku_id,
count(*) refund_count,
sum(refund_num) refund_num,
sum(refund_amount) refund_amount
from ${APP}.dwd_fact_order_refund_info
where dt='$do_date'
group by sku_id
),
tmp_cart as
(
select
item sku_id,
count(*) cart_count
from ${APP}.dwd_action_log
where dt='$do_date'
and user_id is not null
and action_id='cart_add'
group by item
),tmp_favor as
(
select
item sku_id,
count(*) favor_count
from ${APP}.dwd_action_log
where dt='$do_date'
and user_id is not null
and action_id='favor_add'
group by item
),
tmp_appraise as
(
select
sku_id,
sum(if(appraise='1201',1,0)) appraise_good_count,
sum(if(appraise='1202',1,0)) appraise_mid_count,
sum(if(appraise='1203',1,0)) appraise_bad_count,
sum(if(appraise='1204',1,0)) appraise_default_count
from ${APP}.dwd_fact_comment_info
where dt='$do_date'
group by sku_id
)
insert overwrite table ${APP}.dws_sku_action_daycount partition(dt='$do_date')
select
sku_id,
sum(order_count),
sum(order_num),
sum(order_amount),
sum(payment_count),
sum(payment_num),
sum(payment_amount),
sum(refund_count),
sum(refund_num),
sum(refund_amount),
sum(cart_count),
sum(favor_count),
sum(appraise_good_count),
sum(appraise_mid_count),
sum(appraise_bad_count),
sum(appraise_default_count)
from
(
select
sku_id,
order_count,
order_num,
order_amount,
0 payment_count,
0 payment_num,
0 payment_amount,
0 refund_count,
0 refund_num,
0 refund_amount,
0 cart_count,
0 favor_count,
0 appraise_good_count,
0 appraise_mid_count,
0 appraise_bad_count,
0 appraise_default_count
from tmp_order
union all
select
sku_id,
0 order_count,
0 order_num,
0 order_amount,
payment_count,
payment_num,
payment_amount,
0 refund_count,
0 refund_num,
0 refund_amount,
0 cart_count,
0 favor_count,
0 appraise_good_count,
0 appraise_mid_count,
0 appraise_bad_count,
0 appraise_default_count
from tmp_payment
union all
select
sku_id,
0 order_count,
0 order_num,
0 order_amount,
0 payment_count,
0 payment_num,
0 payment_amount,
refund_count,
refund_num,
refund_amount,
0 cart_count,
0 favor_count,
0 appraise_good_count,
0 appraise_mid_count,
0 appraise_bad_count,
0 appraise_default_count
from tmp_refund
union all
select
sku_id,
0 order_count,
0 order_num,
0 order_amount,
0 payment_count,
0 payment_num,
0 payment_amount,
0 refund_count,
0 refund_num,
0 refund_amount,
cart_count,
0 favor_count,
0 appraise_good_count,
0 appraise_mid_count,
0 appraise_bad_count,
0 appraise_default_count
from tmp_cart
union all
select
sku_id,
0 order_count,
0 order_num,
0 order_amount,
0 payment_count,
0 payment_num,
0 payment_amount,
0 refund_count,
0 refund_num,
0 refund_amount,
0 cart_count,
favor_count,
0 appraise_good_count,
0 appraise_mid_count,
0 appraise_bad_count,
0 appraise_default_count
from tmp_favor
union all
select
sku_id,
0 order_count,
0 order_num,
0 order_amount,
0 payment_count,
0 payment_num,
0 payment_amount,
0 refund_count,
0 refund_num,
0 refund_amount,
0 cart_count,
0 favor_count,
appraise_good_count,
appraise_mid_count,
appraise_bad_count,
appraise_default_count
from tmp_appraise
)tmp
group by sku_id;
with
tmp_login as
(
select
area_code,
count(*) login_count
from ${APP}.dwd_start_log
where dt='$do_date'
group by area_code
),
tmp_op as
(
select
province_id,
sum(if(date_format(create_time,'yyyy-MM-dd')='$do_date',1,0)) order_count,
sum(if(date_format(create_time,'yyyy-MM-dd')='$do_date',final_total_amount,0)) order_amount,
sum(if(date_format(payment_time,'yyyy-MM-dd')='$do_date',1,0)) payment_count,
sum(if(date_format(payment_time,'yyyy-MM-dd')='$do_date',final_total_amount,0)) payment_amount
from ${APP}.dwd_fact_order_info
where (dt='$do_date' or dt=date_add('$do_date',-1))
group by province_id
)
insert overwrite table ${APP}.dws_area_stats_daycount partition(dt='$do_date')
select
pro.id,
pro.province_name,
pro.area_code,
pro.iso_code,
pro.region_id,
pro.region_name,
nvl(tmp_login.login_count,0),
nvl(tmp_op.order_count,0),
nvl(tmp_op.order_amount,0.0),
nvl(tmp_op.payment_count,0),
nvl(tmp_op.payment_amount,0.0)
from ${APP}.dwd_dim_base_province pro
left join tmp_login on pro.area_code=tmp_login.area_code
left join tmp_op on pro.id=tmp_op.province_id;
with
tmp_op as
(
select
activity_id,
sum(if(date_format(create_time,'yyyy-MM-dd')='$do_date',1,0)) order_count,
sum(if(date_format(create_time,'yyyy-MM-dd')='$do_date',final_total_amount,0)) order_amount,
sum(if(date_format(payment_time,'yyyy-MM-dd')='$do_date',1,0)) payment_count,
sum(if(date_format(payment_time,'yyyy-MM-dd')='$do_date',final_total_amount,0)) payment_amount
from ${APP}.dwd_fact_order_info
where (dt='$do_date' or dt=date_add('$do_date',-1))
and activity_id is not null
group by activity_id
),
tmp_display as
(
select
item activity_id,
count(*) display_count
from ${APP}.dwd_display_log
where dt='$do_date'
and item_type='activity_id'
group by item
),
tmp_activity as
(
select
*
from ${APP}.dwd_dim_activity_info
where dt='$do_date'
)
insert overwrite table ${APP}.dws_activity_info_daycount partition(dt='$do_date')
select
nvl(tmp_op.activity_id,tmp_display.activity_id),
tmp_activity.activity_name,
tmp_activity.activity_type,
tmp_activity.start_time,
tmp_activity.end_time,
tmp_activity.create_time,
tmp_display.display_count,
tmp_op.order_count,
tmp_op.order_amount,
tmp_op.payment_count,
tmp_op.payment_amount
from tmp_op
full outer join tmp_display on tmp_op.activity_id=tmp_display.activity_id
left join tmp_activity on nvl(tmp_op.activity_id,tmp_display.activity_id)=tmp_activity.id;
"
$hive -e "$sql"
-
增加脚本执行权限
chmod 777 dwd_to_dws.sh
六. 数仓搭建-DWT层
1.设备主题宽表
1.建表语句
create external table dwt_uv_topic
(
`mid_id` string comment '设备id',
`brand` string comment '手机品牌',
`model` string comment '手机型号',
`login_date_first` string comment '首次活跃时间',
`login_date_last` string comment '末次活跃时间',
`login_day_count` bigint comment '当日活跃次数',
`login_count` bigint comment '累积活跃天数'
) COMMENT '设备主题宽表'
stored as parquet
location '/warehouse/gmall/dwt/dwt_uv_topic'
tblproperties ("parquet.compression"="lzo");
2.数据装载
insert overwrite table dwt_uv_topic
select
nvl(new.mid_id,old.mid_id),
nvl(new.model,old.model),
nvl(new.brand,old.brand),
if(old.mid_id is null,'2020-06-14',old.login_date_first),
if(new.mid_id is not null,'2020-06-14',old.login_date_last),
if(new.mid_id is not null, new.login_count,0),
nvl(old.login_count,0)+if(new.login_count>0,1,0)
from
(
select
*
from dwt_uv_topic
)old
full outer join
(
select
*
from dws_uv_detail_daycount
where dt='2020-06-14'
)new
on old.mid_id=new.mid_id;
2.会员主题宽表
1.建表语句
create external table dwt_user_topic
(
user_id string comment '用户id',
login_date_first string comment '首次登录时间',
login_date_last string comment '末次登录时间',
login_count bigint comment '累积登录天数',
login_last_30d_count bigint comment '最近30日登录天数',
order_date_first string comment '首次下单时间',
order_date_last string comment '末次下单时间',
order_count bigint comment '累积下单次数',
order_amount decimal(16,2) comment '累积下单金额',
order_last_30d_count bigint comment '最近30日下单次数',
order_last_30d_amount bigint comment '最近30日下单金额',
payment_date_first string comment '首次支付时间',
payment_date_last string comment '末次支付时间',
payment_count decimal(16,2) comment '累积支付次数',
payment_amount decimal(16,2) comment '累积支付金额',
payment_last_30d_count decimal(16,2) comment '最近30日支付次数',
payment_last_30d_amount decimal(16,2) comment '最近30日支付金额'
)COMMENT '会员主题宽表'
stored as parquet
location '/warehouse/gmall/dwt/dwt_user_topic/'
tblproperties ("parquet.compression"="lzo");
2.数据装载
insert overwrite table dwt_user_topic
select
nvl(new.user_id,old.user_id),
if(old.login_date_first is null and new.login_count>0,'2020-06-14',old.login_date_first),
if(new.login_count>0,'2020-06-14',old.login_date_last),
nvl(old.login_count,0)+if(new.login_count>0,1,0),
nvl(new.login_last_30d_count,0),
if(old.order_date_first is null and new.order_count>0,'2020-06-14',old.order_date_first),
if(new.order_count>0,'2020-06-14',old.order_date_last),
nvl(old.order_count,0)+nvl(new.order_count,0),
nvl(old.order_amount,0)+nvl(new.order_amount,0),
nvl(new.order_last_30d_count,0),
nvl(new.order_last_30d_amount,0),
if(old.payment_date_first is null and new.payment_count>0,'2020-06-14',old.payment_date_first),
if(new.payment_count>0,'2020-06-14',old.payment_date_last),
nvl(old.payment_count,0)+nvl(new.payment_count,0),
nvl(old.payment_amount,0)+nvl(new.payment_amount,0),
nvl(new.payment_last_30d_count,0),
nvl(new.payment_last_30d_amount,0)
from
dwt_user_topic old
full outer join
(
select
user_id,
sum(if(dt='2020-06-14',login_count,0)) login_count,
sum(if(dt='2020-06-14',order_count,0)) order_count,
sum(if(dt='2020-06-14',order_amount,0)) order_amount,
sum(if(dt='2020-06-14',payment_count,0)) payment_count,
sum(if(dt='2020-06-14',payment_amount,0)) payment_amount,
sum(if(login_count>0,1,0)) login_last_30d_count,
sum(order_count) order_last_30d_count,
sum(order_amount) order_last_30d_amount,
sum(payment_count) payment_last_30d_count,
sum(payment_amount) payment_last_30d_amount
from dws_user_action_daycount
where dt>=date_add( '2020-06-14',-30)
group by user_id
)new
on old.user_id=new.user_id;
3.商品主题宽表
1.建表语句
create external table dwt_sku_topic
(
sku_id string comment 'sku_id',
spu_id string comment 'spu_id',
order_last_30d_count bigint comment '最近30日被下单次数',
order_last_30d_num bigint comment '最近30日被下单件数',
order_last_30d_amount decimal(16,2) comment '最近30日被下单金额',
order_count bigint comment '累积被下单次数',
order_num bigint comment '累积被下单件数',
order_amount decimal(16,2) comment '累积被下单金额',
payment_last_30d_count bigint comment '最近30日被支付次数',
payment_last_30d_num bigint comment '最近30日被支付件数',
payment_last_30d_amount decimal(16,2) comment '最近30日被支付金额',
payment_count bigint comment '累积被支付次数',
payment_num bigint comment '累积被支付件数',
payment_amount decimal(16,2) comment '累积被支付金额',
refund_last_30d_count bigint comment '最近三十日退款次数',
refund_last_30d_num bigint comment '最近三十日退款件数',
refund_last_30d_amount decimal(16,2) comment '最近三十日退款金额',
refund_count bigint comment '累积退款次数',
refund_num bigint comment '累积退款件数',
refund_amount decimal(16,2) comment '累积退款金额',
cart_last_30d_count bigint comment '最近30日被加入购物车次数',
cart_count bigint comment '累积被加入购物车次数',
favor_last_30d_count bigint comment '最近30日被收藏次数',
favor_count bigint comment '累积被收藏次数',
appraise_last_30d_good_count bigint comment '最近30日好评数',
appraise_last_30d_mid_count bigint comment '最近30日中评数',
appraise_last_30d_bad_count bigint comment '最近30日差评数',
appraise_last_30d_default_count bigint comment '最近30日默认评价数',
appraise_good_count bigint comment '累积好评数',
appraise_mid_count bigint comment '累积中评数',
appraise_bad_count bigint comment '累积差评数',
appraise_default_count bigint comment '累积默认评价数'
)COMMENT '商品主题宽表'
stored as parquet
location '/warehouse/gmall/dwt/dwt_sku_topic/'
tblproperties ("parquet.compression"="lzo");
2.数据装载
insert overwrite table dwt_sku_topic
select
nvl(new.sku_id,old.sku_id),
sku_info.spu_id,
nvl(new.order_count30,0),
nvl(new.order_num30,0),
nvl(new.order_amount30,0),
nvl(old.order_count,0) + nvl(new.order_count,0),
nvl(old.order_num,0) + nvl(new.order_num,0),
nvl(old.order_amount,0) + nvl(new.order_amount,0),
nvl(new.payment_count30,0),
nvl(new.payment_num30,0),
nvl(new.payment_amount30,0),
nvl(old.payment_count,0) + nvl(new.payment_count,0),
nvl(old.payment_num,0) + nvl(new.payment_num,0),
nvl(old.payment_amount,0) + nvl(new.payment_amount,0),
nvl(new.refund_count30,0),
nvl(new.refund_num30,0),
nvl(new.refund_amount30,0),
nvl(old.refund_count,0) + nvl(new.refund_count,0),
nvl(old.refund_num,0) + nvl(new.refund_num,0),
nvl(old.refund_amount,0) + nvl(new.refund_amount,0),
nvl(new.cart_count30,0),
nvl(old.cart_count,0) + nvl(new.cart_count,0),
nvl(new.favor_count30,0),
nvl(old.favor_count,0) + nvl(new.favor_count,0),
nvl(new.appraise_good_count30,0),
nvl(new.appraise_mid_count30,0),
nvl(new.appraise_bad_count30,0),
nvl(new.appraise_default_count30,0) ,
nvl(old.appraise_good_count,0) + nvl(new.appraise_good_count,0),
nvl(old.appraise_mid_count,0) + nvl(new.appraise_mid_count,0),
nvl(old.appraise_bad_count,0) + nvl(new.appraise_bad_count,0),
nvl(old.appraise_default_count,0) + nvl(new.appraise_default_count,0)
from
dwt_sku_topic old
full outer join
(
select
sku_id,
sum(if(dt='2020-06-14',order_count,0 )) order_count,
sum(if(dt='2020-06-14',order_num ,0 )) order_num,
sum(if(dt='2020-06-14',order_amount,0 )) order_amount ,
sum(if(dt='2020-06-14',payment_count,0 )) payment_count,
sum(if(dt='2020-06-14',payment_num,0 )) payment_num,
sum(if(dt='2020-06-14',payment_amount,0 )) payment_amount,
sum(if(dt='2020-06-14',refund_count,0 )) refund_count,
sum(if(dt='2020-06-14',refund_num,0 )) refund_num,
sum(if(dt='2020-06-14',refund_amount,0 )) refund_amount,
sum(if(dt='2020-06-14',cart_count,0 )) cart_count,
sum(if(dt='2020-06-14',favor_count,0 )) favor_count,
sum(if(dt='2020-06-14',appraise_good_count,0 )) appraise_good_count,
sum(if(dt='2020-06-14',appraise_mid_count,0 ) ) appraise_mid_count ,
sum(if(dt='2020-06-14',appraise_bad_count,0 )) appraise_bad_count,
sum(if(dt='2020-06-14',appraise_default_count,0 )) appraise_default_count,
sum(order_count) order_count30 ,
sum(order_num) order_num30,
sum(order_amount) order_amount30,
sum(payment_count) payment_count30,
sum(payment_num) payment_num30,
sum(payment_amount) payment_amount30,
sum(refund_count) refund_count30,
sum(refund_num) refund_num30,
sum(refund_amount) refund_amount30,
sum(cart_count) cart_count30,
sum(favor_count) favor_count30,
sum(appraise_good_count) appraise_good_count30,
sum(appraise_mid_count) appraise_mid_count30,
sum(appraise_bad_count) appraise_bad_count30,
sum(appraise_default_count) appraise_default_count30
from dws_sku_action_daycount
where dt >= date_add ('2020-06-14', -30)
group by sku_id
)new
on new.sku_id = old.sku_id
left join
(select * from dwd_dim_sku_info where dt='2020-06-14') sku_info
on nvl(new.sku_id,old.sku_id)= sku_info.id;
4.活动主题宽表
1.建表语句
create external table dwt_activity_topic(
`id` string COMMENT '编号',
`activity_name` string COMMENT '活动名称',
`activity_type` string COMMENT '活动类型',
`start_time` string COMMENT '开始时间',
`end_time` string COMMENT '结束时间',
`create_time` string COMMENT '创建时间',
`display_day_count` bigint COMMENT '当日曝光次数',
`order_day_count` bigint COMMENT '当日下单次数',
`order_day_amount` decimal(20,2) COMMENT '当日下单金额',
`payment_day_count` bigint COMMENT '当日支付次数',
`payment_day_amount` decimal(20,2) COMMENT '当日支付金额',
`display_count` bigint COMMENT '累积曝光次数',
`order_count` bigint COMMENT '累积下单次数',
`order_amount` decimal(20,2) COMMENT '累积下单金额',
`payment_count` bigint COMMENT '累积支付次数',
`payment_amount` decimal(20,2) COMMENT '累积支付金额'
) COMMENT '活动主题宽表'
stored as parquet
location '/warehouse/gmall/dwt/dwt_activity_topic/'
tblproperties ("parquet.compression"="lzo");
2.数据装载
insert overwrite table dwt_activity_topic
select
nvl(new.id,old.id),
nvl(new.activity_name,old.activity_name),
nvl(new.activity_type,old.activity_type),
nvl(new.start_time,old.start_time),
nvl(new.end_time,old.end_time),
nvl(new.create_time,old.create_time),
nvl(new.display_count,0),
nvl(new.order_count,0),
nvl(new.order_amount,0.0),
nvl(new.payment_count,0),
nvl(new.payment_amount,0.0),
nvl(new.display_count,0)+nvl(old.display_count,0),
nvl(new.order_count,0)+nvl(old.order_count,0),
nvl(new.order_amount,0.0)+nvl(old.order_amount,0.0),
nvl(new.payment_count,0)+nvl(old.payment_count,0),
nvl(new.payment_amount,0.0)+nvl(old.payment_amount,0.0)
from
(
select
*
from dwt_activity_topic
)old
full outer join
(
select
*
from dws_activity_info_daycount
where dt='2020-06-14'
)new
on old.id=new.id;
5.地区主题宽表
1.建表语句
create external table dwt_area_topic(
`id` bigint COMMENT '编号',
`province_name` string COMMENT '省份名称',
`area_code` string COMMENT '地区编码',
`iso_code` string COMMENT 'iso编码',
`region_id` string COMMENT '地区ID',
`region_name` string COMMENT '地区名称',
`login_day_count` string COMMENT '当天活跃设备数',
`login_last_30d_count` string COMMENT '最近30天活跃设备数',
`order_day_count` bigint COMMENT '当天下单次数',
`order_day_amount` decimal(16,2) COMMENT '当天下单金额',
`order_last_30d_count` bigint COMMENT '最近30天下单次数',
`order_last_30d_amount` decimal(16,2) COMMENT '最近30天下单金额',
`payment_day_count` bigint COMMENT '当天支付次数',
`payment_day_amount` decimal(16,2) COMMENT '当天支付金额',
`payment_last_30d_count` bigint COMMENT '最近30天支付次数',
`payment_last_30d_amount` decimal(16,2) COMMENT '最近30天支付金额'
) COMMENT '地区主题宽表'
stored as parquet
location '/warehouse/gmall/dwt/dwt_area_topic/'
tblproperties ("parquet.compression"="lzo");
2.数据装载
insert overwrite table dwt_area_topic
select
nvl(old.id,new.id),
nvl(old.province_name,new.province_name),
nvl(old.area_code,new.area_code),
nvl(old.iso_code,new.iso_code),
nvl(old.region_id,new.region_id),
nvl(old.region_name,new.region_name),
nvl(new.login_day_count,0),
nvl(new.login_last_30d_count,0),
nvl(new.order_day_count,0),
nvl(new.order_day_amount,0.0),
nvl(new.order_last_30d_count,0),
nvl(new.order_last_30d_amount,0.0),
nvl(new.payment_day_count,0),
nvl(new.payment_day_amount,0.0),
nvl(new.payment_last_30d_count,0),
nvl(new.payment_last_30d_amount,0.0)
from
(
select
*
from dwt_area_topic
)old
full outer join
(
select
id,
province_name,
area_code,
iso_code,
region_id,
region_name,
sum(if(dt='2020-06-14',login_count,0)) login_day_count,
sum(if(dt='2020-06-14',order_count,0)) order_day_count,
sum(if(dt='2020-06-14',order_amount,0.0)) order_day_amount,
sum(if(dt='2020-06-14',payment_count,0)) payment_day_count,
sum(if(dt='2020-06-14',payment_amount,0.0)) payment_day_amount,
sum(login_count) login_last_30d_count,
sum(order_count) order_last_30d_count,
sum(order_amount) order_last_30d_amount,
sum(payment_count) payment_last_30d_count,
sum(payment_amount) payment_last_30d_amount
from dws_area_stats_daycount
where dt>=date_add('2020-06-14',-30)
group by id,province_name,area_code,iso_code,region_id,region_name
)new
on old.id=new.id;
6. DWT层数据导入脚本
1.在/home/atguigu/bin目录下创建脚本dws_to_dwt.sh
vim dws_to_dwt.sh
2.在脚本中填写如下内容
#!/bin/bash
APP=gmall
hive=/opt/module/hive/bin/hive
# 如果是输入的日期按照取输入日期;如果没输入日期取当前时间的前一天
if [ -n "$1" ] ;then
do_date=$1
else
do_date=`date -d "-1 day" +%F`
fi
sql="
set mapreduce.job.queuename=hive;
insert overwrite table ${APP}.dwt_uv_topic
select
nvl(new.mid_id,old.mid_id),
nvl(new.model,old.model),
nvl(new.brand,old.brand),
if(old.mid_id is null,'$do_date',old.login_date_first),
if(new.mid_id is not null,'$do_date',old.login_date_last),
if(new.mid_id is not null, new.login_count,0),
nvl(old.login_count,0)+if(new.login_count>0,1,0)
from
(
select
*
from ${APP}.dwt_uv_topic
)old
full outer join
(
select
*
from ${APP}.dws_uv_detail_daycount
where dt='$do_date'
)new
on old.mid_id=new.mid_id;
insert overwrite table ${APP}.dwt_user_topic
select
nvl(new.user_id,old.user_id),
if(old.login_date_first is null and new.login_count>0,'$do_date',old.login_date_first),
if(new.login_count>0,'$do_date',old.login_date_last),
nvl(old.login_count,0)+if(new.login_count>0,1,0),
nvl(new.login_last_30d_count,0),
if(old.order_date_first is null and new.order_count>0,'$do_date',old.order_date_first),
if(new.order_count>0,'$do_date',old.order_date_last),
nvl(old.order_count,0)+nvl(new.order_count,0),
nvl(old.order_amount,0)+nvl(new.order_amount,0),
nvl(new.order_last_30d_count,0),
nvl(new.order_last_30d_amount,0),
if(old.payment_date_first is null and new.payment_count>0,'$do_date',old.payment_date_first),
if(new.payment_count>0,'$do_date',old.payment_date_last),
nvl(old.payment_count,0)+nvl(new.payment_count,0),
nvl(old.payment_amount,0)+nvl(new.payment_amount,0),
nvl(new.payment_last_30d_count,0),
nvl(new.payment_last_30d_amount,0)
from
${APP}.dwt_user_topic old
full outer join
(
select
user_id,
sum(if(dt='$do_date',login_count,0)) login_count,
sum(if(dt='$do_date',order_count,0)) order_count,
sum(if(dt='$do_date',order_amount,0)) order_amount,
sum(if(dt='$do_date',payment_count,0)) payment_count,
sum(if(dt='$do_date',payment_amount,0)) payment_amount,
sum(if(login_count>0,1,0)) login_last_30d_count,
sum(order_count) order_last_30d_count,
sum(order_amount) order_last_30d_amount,
sum(payment_count) payment_last_30d_count,
sum(payment_amount) payment_last_30d_amount
from ${APP}.dws_user_action_daycount
where dt>=date_add( '$do_date',-30)
group by user_id
)new
on old.user_id=new.user_id;
insert overwrite table ${APP}.dwt_sku_topic
select
nvl(new.sku_id,old.sku_id),
sku_info.spu_id,
nvl(new.order_count30,0),
nvl(new.order_num30,0),
nvl(new.order_amount30,0),
nvl(old.order_count,0) + nvl(new.order_count,0),
nvl(old.order_num,0) + nvl(new.order_num,0),
nvl(old.order_amount,0) + nvl(new.order_amount,0),
nvl(new.payment_count30,0),
nvl(new.payment_num30,0),
nvl(new.payment_amount30,0),
nvl(old.payment_count,0) + nvl(new.payment_count,0),
nvl(old.payment_num,0) + nvl(new.payment_num,0),
nvl(old.payment_amount,0) + nvl(new.payment_amount,0),
nvl(new.refund_count30,0),
nvl(new.refund_num30,0),
nvl(new.refund_amount30,0),
nvl(old.refund_count,0) + nvl(new.refund_count,0),
nvl(old.refund_num,0) + nvl(new.refund_num,0),
nvl(old.refund_amount,0) + nvl(new.refund_amount,0),
nvl(new.cart_count30,0),
nvl(old.cart_count,0) + nvl(new.cart_count,0),
nvl(new.favor_count30,0),
nvl(old.favor_count,0) + nvl(new.favor_count,0),
nvl(new.appraise_good_count30,0),
nvl(new.appraise_mid_count30,0),
nvl(new.appraise_bad_count30,0),
nvl(new.appraise_default_count30,0) ,
nvl(old.appraise_good_count,0) + nvl(new.appraise_good_count,0),
nvl(old.appraise_mid_count,0) + nvl(new.appraise_mid_count,0),
nvl(old.appraise_bad_count,0) + nvl(new.appraise_bad_count,0),
nvl(old.appraise_default_count,0) + nvl(new.appraise_default_count,0)
from
(
select
sku_id,
spu_id,
order_last_30d_count,
order_last_30d_num,
order_last_30d_amount,
order_count,
order_num,
order_amount ,
payment_last_30d_count,
payment_last_30d_num,
payment_last_30d_amount,
payment_count,
payment_num,
payment_amount,
refund_last_30d_count,
refund_last_30d_num,
refund_last_30d_amount,
refund_count,
refund_num,
refund_amount,
cart_last_30d_count,
cart_count,
favor_last_30d_count,
favor_count,
appraise_last_30d_good_count,
appraise_last_30d_mid_count,
appraise_last_30d_bad_count,
appraise_last_30d_default_count,
appraise_good_count,
appraise_mid_count,
appraise_bad_count,
appraise_default_count
from ${APP}.dwt_sku_topic
)old
full outer join
(
select
sku_id,
sum(if(dt='$do_date', order_count,0 )) order_count,
sum(if(dt='$do_date',order_num ,0 )) order_num,
sum(if(dt='$do_date',order_amount,0 )) order_amount ,
sum(if(dt='$do_date',payment_count,0 )) payment_count,
sum(if(dt='$do_date',payment_num,0 )) payment_num,
sum(if(dt='$do_date',payment_amount,0 )) payment_amount,
sum(if(dt='$do_date',refund_count,0 )) refund_count,
sum(if(dt='$do_date',refund_num,0 )) refund_num,
sum(if(dt='$do_date',refund_amount,0 )) refund_amount,
sum(if(dt='$do_date',cart_count,0 )) cart_count,
sum(if(dt='$do_date',favor_count,0 )) favor_count,
sum(if(dt='$do_date',appraise_good_count,0 )) appraise_good_count,
sum(if(dt='$do_date',appraise_mid_count,0 ) ) appraise_mid_count ,
sum(if(dt='$do_date',appraise_bad_count,0 )) appraise_bad_count,
sum(if(dt='$do_date',appraise_default_count,0 )) appraise_default_count,
sum(order_count) order_count30 ,
sum(order_num) order_num30,
sum(order_amount) order_amount30,
sum(payment_count) payment_count30,
sum(payment_num) payment_num30,
sum(payment_amount) payment_amount30,
sum(refund_count) refund_count30,
sum(refund_num) refund_num30,
sum(refund_amount) refund_amount30,
sum(cart_count) cart_count30,
sum(favor_count) favor_count30,
sum(appraise_good_count) appraise_good_count30,
sum(appraise_mid_count) appraise_mid_count30,
sum(appraise_bad_count) appraise_bad_count30,
sum(appraise_default_count) appraise_default_count30
from ${APP}.dws_sku_action_daycount
where dt >= date_add ('$do_date', -30)
group by sku_id
)new
on new.sku_id = old.sku_id
left join
(select * from ${APP}.dwd_dim_sku_info where dt='$do_date') sku_info
on nvl(new.sku_id,old.sku_id)= sku_info.id;
insert overwrite table ${APP}.dwt_activity_topic
select
nvl(new.id,old.id),
nvl(new.activity_name,old.activity_name),
nvl(new.activity_type,old.activity_type),
nvl(new.start_time,old.start_time),
nvl(new.end_time,old.end_time),
nvl(new.create_time,old.create_time),
nvl(new.display_count,0),
nvl(new.order_count,0),
nvl(new.order_amount,0.0),
nvl(new.payment_count,0),
nvl(new.payment_amount,0.0),
nvl(new.display_count,0)+nvl(old.display_count,0),
nvl(new.order_count,0)+nvl(old.order_count,0),
nvl(new.order_amount,0.0)+nvl(old.order_amount,0.0),
nvl(new.payment_count,0)+nvl(old.payment_count,0),
nvl(new.payment_amount,0.0)+nvl(old.payment_amount,0.0)
from
(
select
*
from ${APP}.dwt_activity_topic
)old
full outer join
(
select
*
from ${APP}.dws_activity_info_daycount
where dt='$do_date'
)new
on old.id=new.id;
insert overwrite table ${APP}.dwt_area_topic
select
nvl(old.id,new.id),
nvl(old.province_name,new.province_name),
nvl(old.area_code,new.area_code),
nvl(old.iso_code,new.iso_code),
nvl(old.region_id,new.region_id),
nvl(old.region_name,new.region_name),
nvl(new.login_day_count,0),
nvl(new.login_last_30d_count,0),
nvl(new.order_day_count,0),
nvl(new.order_day_amount,0.0),
nvl(new.order_last_30d_count,0),
nvl(new.order_last_30d_amount,0.0),
nvl(new.payment_day_count,0),
nvl(new.payment_day_amount,0.0),
nvl(new.payment_last_30d_count,0),
nvl(new.payment_last_30d_amount,0.0)
from
(
select
*
from ${APP}.dwt_area_topic
)old
full outer join
(
select
id,
province_name,
area_code,
iso_code,
region_id,
region_name,
sum(if(dt='$do_date',login_count,0)) login_day_count,
sum(if(dt='$do_date',order_count,0)) order_day_count,
sum(if(dt='$do_date',order_amount,0.0)) order_day_amount,
sum(if(dt='$do_date',payment_count,0)) payment_day_count,
sum(if(dt='$do_date',payment_amount,0.0)) payment_day_amount,
sum(login_count) login_last_30d_count,
sum(order_count) order_last_30d_count,
sum(order_amount) order_last_30d_amount,
sum(payment_count) payment_last_30d_count,
sum(payment_amount) payment_last_30d_amount
from ${APP}.dws_area_stats_daycount
where dt>=date_add('$do_date',-30)
group by id,province_name,area_code,iso_code,region_id,region_name
)new
on old.id=new.id;
"
$hive -e "$sql"
3.增加脚本执行权限
chmod 777 dws_to_dwt.sh
七. 数仓搭建-ADS层
1.新数据生成
1.重启行为数据通道
cluster.sh stop
cluster.sh start
2.修改/opt/module/applog下的application.properties
#业务日期
mock.date=2020-06-16
注意:分发至其他需要生成数据的节点
xsync application.properties
3.生成数据
lg.sh
注意:生成数据之后,记得查看HDFS数据是否存在!
4.导入数据至ODS层
hdfs_to_ods_log.sh 2020-06-16
5.导入数据至DWD层
ods_to_dwd_log.sh 2020-06-16
6.导入数据至DWS层
dwd_to_dws.sh 2020-06-16
7.导入数据至DWT层
dws_to_dwt.sh 2020-06-16
8.修改application.properties
#业务日期
mock.date=2020-06-25
重复前面3-7步即可!
2. 设备主题
1.活跃设备数(日,周,月)
需求定义:
日活:当日活跃的设备数
周活:当周活跃的设备数
月活:当月活跃的设备数
1.建表语句
create external table ads_uv_count(
`dt` string COMMENT '统计日期',
`day_count` bigint COMMENT '当日用户数量',
`wk_count` bigint COMMENT '当周用户数量',
`mn_count` bigint COMMENT '当月用户数量',
`is_weekend` string COMMENT 'Y,N是否是周末,用于得到本周最终结果',
`is_monthend` string COMMENT 'Y,N是否是月末,用于得到本月最终结果'
) COMMENT '活跃设备数'
row format delimited fields terminated by '\t'
location '/warehouse/gmall/ads/ads_uv_count/';
2.导入数据
insert into table ads_uv_count
select
'2020-06-14' dt,
daycount.ct,
wkcount.ct,
mncount.ct,
if(date_add(next_day('2020-06-14','MO'),-1)='2020-06-14','Y','N') ,
if(last_day('2020-06-14')='2020-06-14','Y','N')
from
(
select
'2020-06-14' dt,
count(*) ct
from dwt_uv_topic
where login_date_last='2020-06-14'
)daycount join
(
select
'2020-06-14' dt,
count (*) ct
from dwt_uv_topic
where login_date_last>=date_add(next_day('2020-06-14','MO'),-7)
and login_date_last<= date_add(next_day('2020-06-14','MO'),-1)
) wkcount on daycount.dt=wkcount.dt
join
(
select
'2020-06-14' dt,
count (*) ct
from dwt_uv_topic
where date_format(login_date_last,'yyyy-MM')=date_format('2020-06-14','yyyy-MM')
)mncount on daycount.dt=mncount.dt;
2. 每日新增设备
-
建表语句
drop table if exists ads_new_mid_count; create external table ads_new_mid_count ( `create_date` string comment '创建时间' , `new_mid_count` BIGINT comment '新增设备数量' ) COMMENT '每日新增设备数量' row format delimited fields terminated by '\t' location '/warehouse/gmall/ads/ads_new_mid_count/';
-
导入数据
insert into table ads_new_mid_count select '2020-06-14', count(*) from dwt_uv_topic where login_date_first='2020-06-14';
3.留存率
-
建表语句
create external table ads_user_retention_day_rate ( `stat_date` string comment '统计日期', `create_date` string comment '设备新增日期', `retention_day` int comment '截止当前日期留存天数', `retention_count` bigint comment '留存数量', `new_mid_count` bigint comment '设备新增数量', `retention_ratio` decimal(16,2) comment '留存率' ) COMMENT '留存率' row format delimited fields terminated by '\t' location '/warehouse/gmall/ads/ads_user_retention_day_rate/';
-
导入数据
insert into table ads_user_retention_day_rate select '2020-06-15', date_add('2020-06-15',-1), 1, --留存天数 sum(if(login_date_first=date_add('2020-06-15',-1) and login_date_last='2020-06-15',1,0)), sum(if(login_date_first=date_add('2020-06-15',-1),1,0)), sum(if(login_date_first=date_add('2020-06-15',-1) and login_date_last='2020-06-15',1,0))/sum(if(login_date_first=date_add('2020-06-15',-1),1,0))*100 from dwt_uv_topic union all select '2020-06-15', date_add('2020-06-15',-2), 2, sum(if(login_date_first=date_add('2020-06-15',-2) and login_date_last='2020-06-15',1,0)), sum(if(login_date_first=date_add('2020-06-15',-2),1,0)), sum(if(login_date_first=date_add('2020-06-15',-2) and login_date_last='2020-06-15',1,0))/sum(if(login_date_first=date_add('2020-06-15',-2),1,0))*100 from dwt_uv_topic union all select '2020-06-15', date_add('2020-06-15',-3), 3, sum(if(login_date_first=date_add('2020-06-15',-3) and login_date_last='2020-06-15',1,0)), sum(if(login_date_first=date_add('2020-06-15',-3),1,0)), sum(if(login_date_first=date_add('2020-06-15',-3) and login_date_last='2020-06-15',1,0))/sum(if(login_date_first=date_add('2020-06-15',-3),1,0))*100 from dwt_uv_topic;
4.沉默用户数
需求定义:
沉默用户:只在安装当天启动过,且启动时间是在7天前
-
建表语句
create external table ads_silent_count( `dt` string COMMENT '统计日期', `silent_count` bigint COMMENT '沉默设备数' ) COMMENT '沉默用户数' row format delimited fields terminated by '\t' location '/warehouse/gmall/ads/ads_silent_count';
-
导入数据
insert into table ads_silent_count select '2020-06-25', count(*) from dwt_uv_topic where login_date_first=login_date_last and login_date_last<=date_add('2020-06-25',-7);
5.本周回流用户数
需求定义:
本周回流用户:上周未活跃,本周活跃的设备,且不是本周新增设备
-
建表语句
create external table ads_back_count( `dt` string COMMENT '统计日期', `wk_dt` string COMMENT '统计日期所在周', `wastage_count` bigint COMMENT '回流设备数' ) COMMENT '本周回流用户数' row format delimited fields terminated by '\t' location '/warehouse/gmall/ads/ads_back_count';
-
导入数据
insert into table ads_back_count select '2020-06-25', concat(date_add(next_day('2020-06-25','MO'),-7),'_', date_add(next_day('2020-06-25','MO'),-1)), count(*) from ( select mid_id from dwt_uv_topic where login_date_last>=date_add(next_day('2020-06-25','MO'),-7) and login_date_last<= date_add(next_day('2020-06-25','MO'),-1) and login_date_first<date_add(next_day('2020-06-25','MO'),-7) )current_wk --本周活跃减去本周新增 left join ( select mid_id from dws_uv_detail_daycount where dt>=date_add(next_day('2020-06-25','MO'),-7*2) and dt<= date_add(next_day('2020-06-25','MO'),-7-1) group by mid_id )last_wk --上周活跃 on current_wk.mid_id=last_wk.mid_id where last_wk.mid_id is null;
6. 流失用户数
需求定义:
流失用户:最近7天未活跃的设备
-
建表语句
create external table ads_wastage_count( `dt` string COMMENT '统计日期', `wastage_count` bigint COMMENT '流失设备数' ) COMMENT '流失用户数' row format delimited fields terminated by '\t' location '/warehouse/gmall/ads/ads_wastage_count';
2.导入2020-06-25数据
insert into table ads_wastage_count
select
'2020-06-25',
count(*)
from
(
select
mid_id
from dwt_uv_topic
where login_date_last<=date_add('2020-06-25',-7)
group by mid_id
)t1;
7.最近连续三周活跃用户数
1.建表语句
create external table ads_continuity_wk_count(
`dt` string COMMENT '统计日期,一般用结束周周日日期,如果每天计算一次,可用当天日期',
`wk_dt` string COMMENT '持续时间',
`continuity_count` bigint COMMENT '活跃设备数'
) COMMENT '最近连续三周活跃用户数'
row format delimited fields terminated by '\t'
location '/warehouse/gmall/ads/ads_continuity_wk_count';
2.导入2020-06-25所在周的数据
insert into table ads_continuity_wk_count
select
'2020-06-25',
concat(date_add(next_day('2020-06-25','MO'),-7*3),'_',date_add(next_day('2020-06-25','MO'),-1)),
count(*)
from
(
select
mid_id
from
(
select
mid_id
from dws_uv_detail_daycount
where dt>=date_add(next_day('2020-06-25','monday'),-7)
and dt<=date_add(next_day('2020-06-25','monday'),-1)
group by mid_id
union all
select
mid_id
from dws_uv_detail_daycount
where dt>=date_add(next_day('2020-06-25','monday'),-7*2)
and dt<=date_add(next_day('2020-06-25','monday'),-7-1)
group by mid_id
union all
select
mid_id
from dws_uv_detail_daycount
where dt>=date_add(next_day('2020-06-25','monday'),-7*3)
and dt<=date_add(next_day('2020-06-25','monday'),-7*2-1)
group by mid_id
)t1
group by mid_id
having count(*)=3
)t2;
8.最近七天内连续三天活跃用户数
1.建表语句
create external table ads_continuity_uv_count(
`dt` string COMMENT '统计日期',
`wk_dt` string COMMENT '最近7天日期',
`continuity_count` bigint
) COMMENT '最近七天内连续三天活跃用户数'
row format delimited fields terminated by '\t'
location '/warehouse/gmall/ads/ads_continuity_uv_count';
2.写出导入数据的sql语句
insert into table ads_continuity_uv_count
select
'2020-06-16',
concat(date_add('2020-06-16',-6),'_','2020-06-16'),
count(*)
from
(
select mid_id
from
(
select mid_id
from
(
select
mid_id,
date_sub(dt,rank) date_dif
from
(
select
mid_id,
dt,
rank() over(partition by mid_id order by dt) rank
from dws_uv_detail_daycount
where dt>=date_add('2020-06-16',-6) and dt<='2020-06-16'
)t1
)t2
group by mid_id,date_dif
having count(*)>=3
)t3
group by mid_id --去重,防止一个设备有两段连续超过3天的日子
)t4;
3. 会员主题
1.会员信息
1.建表语句
create external table ads_user_topic(
`dt` string COMMENT '统计日期',
`day_users` string COMMENT '活跃会员数',
`day_new_users` string COMMENT '新增会员数',
`day_new_payment_users` string COMMENT '新增消费会员数',
`payment_users` string COMMENT '总付费会员数',
`users` string COMMENT '总会员数',
`day_users2users` decimal(16,2) COMMENT '会员活跃率',
`payment_users2users` decimal(16,2) COMMENT '会员付费率',
`day_new_users2users` decimal(16,2) COMMENT '会员新鲜度'
) COMMENT '会员信息表'
row format delimited fields terminated by '\t'
location '/warehouse/gmall/ads/ads_user_topic';
2.导入数据
insert into table ads_user_topic
select
'2020-06-14',
sum(if(login_date_last='2020-06-14',1,0)),
sum(if(login_date_first='2020-06-14',1,0)),
sum(if(payment_date_first='2020-06-14',1,0)),
sum(if(payment_count>0,1,0)),
count(*),
sum(if(login_date_last='2020-06-14',1,0))/count(*),
sum(if(payment_count>0,1,0))/count(*),
sum(if(login_date_first='2020-06-14',1,0))/sum(if(login_date_last='2020-06-14',1,0))
from dwt_user_topic;
2.漏斗分析
统计“浏览首页->浏览商品详情页->加入购物车->下单->支付”的转化率
思路:统计各个行为的人数,然后计算比值。
1.建表语句
create external table ads_user_action_convert_day(
`dt` string COMMENT '统计日期',
`home_count` bigint COMMENT '浏览首页人数',
`good_detail_count` bigint COMMENT '浏览商品详情页人数',
`home2good_detail_convert_ratio` decimal(16,2) COMMENT '首页到商品详情转化率',
`cart_count` bigint COMMENT '加入购物车的人数',
`good_detail2cart_convert_ratio` decimal(16,2) COMMENT '商品详情页到加入购物车转化率',
`order_count` bigint COMMENT '下单人数',
`cart2order_convert_ratio` decimal(16,2) COMMENT '加入购物车到下单转化率',
`payment_amount` bigint COMMENT '支付人数',
`order2payment_convert_ratio` decimal(16,2) COMMENT '下单到支付的转化率'
) COMMENT '漏斗分析'
row format delimited fields terminated by '\t'
location '/warehouse/gmall/ads/ads_user_action_convert_day/';
2.数据装载
with
tmp_uv as
(
select
'2020-06-14' dt,
sum(if(page_id = 'home',1,0)) home_count,
sum(if(page_id = 'good_detail',1,0)) good_detail_count
from
(
select
mid_id,
page_id
from dwd_page_log
where dt='2020-06-14'
and page_id in ('home','good_detail')
group by mid_id,page_id
) tmp
),
tmp_cop as
(
select
'2020-06-14' dt,
sum(if(cart_count>0,1,0)) cart_count,
sum(if(order_count>0,1,0)) order_count,
sum(if(payment_count>0,1,0)) payment_count
from dws_user_action_daycount
where dt='2020-06-14'
)
insert into table ads_user_action_convert_day
select
tmp_uv.dt,
tmp_uv.home_count,
tmp_uv.good_detail_count,
tmp_uv.good_detail_count/tmp_uv.home_count*100,
tmp_cop.cart_count,
tmp_cop.cart_count/tmp_uv.good_detail_count*100,
tmp_cop.order_count,
tmp_cop.order_count/tmp_cop.cart_count*100,
tmp_cop.payment_count,
tmp_cop.payment_count/tmp_cop.order_count*100
from tmp_uv
join tmp_cop
on tmp_uv.dt=tmp_cop.dt;
4.商品主题
1.商品个数信息
1.建表语句
create external table ads_product_info(
`dt` string COMMENT '统计日期',
`sku_num` string COMMENT 'sku个数',
`spu_num` string COMMENT 'spu个数'
) COMMENT '商品个数信息'
row format delimited fields terminated by '\t'
location '/warehouse/gmall/ads/ads_product_info';
2.数据导入
insert into table ads_product_info
select
'2020-06-14' dt,
sku_num,
spu_num
from
(
select
'2020-06-14' dt,
count(*) sku_num
from
dwt_sku_topic
) tmp_sku_num
join
(
select
'2020-06-14' dt,
count(*) spu_num
from
(
select
spu_id
from
dwt_sku_topic
group by
spu_id
) tmp_spu_id
) tmp_spu_num
on tmp_sku_num.dt=tmp_spu_num.dt;
2.商品销量金额排名
1.建表语句
create external table ads_product_sale_topN(
`dt` string COMMENT '统计日期',
`sku_id` string COMMENT '商品ID',
`payment_amount` bigint COMMENT '销量金额'
) COMMENT '商品销量排名'
row format delimited fields terminated by '\t'
location '/warehouse/gmall/ads/ads_product_sale_topN';
2.导入数据
insert into table ads_product_sale_topN
select
'2020-06-14' dt,
sku_id,
payment_amount
from
dws_sku_action_daycount
where
dt='2020-06-14'
order by payment_amount desc
limit 10;
3.商品收藏排名
1.建表语句
create external table ads_product_favor_topN(
`dt` string COMMENT '统计日期',
`sku_id` string COMMENT '商品ID',
`favor_count` bigint COMMENT '收藏量'
) COMMENT '商品收藏排名'
row format delimited fields terminated by '\t'
location '/warehouse/gmall/ads/ads_product_favor_topN';
2.数据导入
insert into table ads_product_favor_topN
select
'2020-06-14' dt,
sku_id,
favor_count
from
dws_sku_action_daycount
where
dt='2020-06-14'
order by favor_count desc
limit 10;
4.商品加入购物车排名
1.建表语句
create external table ads_product_cart_topN(
`dt` string COMMENT '统计日期',
`sku_id` string COMMENT '商品ID',
`cart_count` bigint COMMENT '加入购物车次数'
) COMMENT '商品加入购物车排名'
row format delimited fields terminated by '\t'
location '/warehouse/gmall/ads/ads_product_cart_topN';
2.数据导入
insert into table ads_product_cart_topN
select
'2020-06-14' dt,
sku_id,
cart_count
from
dws_sku_action_daycount
where
dt='2020-06-14'
order by cart_count desc
limit 10;
5.商品退款率排名(最近30天)
1.建表语句
create external table ads_product_refund_topN(
`dt` string COMMENT '统计日期',
`sku_id` string COMMENT '商品ID',
`refund_ratio` decimal(16,2) COMMENT '退款率'
) COMMENT '商品退款率排名'
row format delimited fields terminated by '\t'
location '/warehouse/gmall/ads/ads_product_refund_topN';
2.导入数据
insert into table ads_product_refund_topN
select
'2020-06-14',
sku_id,
refund_last_30d_count/payment_last_30d_count*100 refund_ratio
from dwt_sku_topic
order by refund_ratio desc
limit 10;
6.商品差评率排名
1.建表语句
create external table ads_appraise_bad_topN(
`dt` string COMMENT '统计日期',
`sku_id` string COMMENT '商品ID',
`appraise_bad_ratio` decimal(16,2) COMMENT '差评率'
) COMMENT '商品差评率'
row format delimited fields terminated by '\t'
location '/warehouse/gmall/ads/ads_appraise_bad_topN';
2.导入数据
insert into table ads_appraise_bad_topN
select
'2020-06-14' dt,
sku_id,
appraise_bad_count/(appraise_good_count+appraise_mid_count+appraise_bad_count+appraise_default_count) appraise_bad_ratio
from
dws_sku_action_daycount
where
dt='2020-06-14'
order by appraise_bad_ratio desc
limit 10;
5.营销主题(用户+商品+购买行为)
需求分析:统计每日下单数,下单金额及下单用户数。
1.下单数目统计
1.建表语句
create external table ads_order_daycount(
dt string comment '统计日期',
order_count bigint comment '单日下单笔数',
order_amount bigint comment '单日下单金额',
order_users bigint comment '单日下单用户数'
) comment '下单数目统计'
row format delimited fields terminated by '\t'
location '/warehouse/gmall/ads/ads_order_daycount';
2.数据导入
insert into table ads_order_daycount
select
'2020-06-14',
sum(order_count),
sum(order_amount),
sum(if(order_count>0,1,0))
from dws_user_action_daycount
where dt='2020-06-14';
2.支付信息统计
每日支付金额、支付人数、支付商品数、支付笔数以及下单到支付的平均时长(取自DWD)
1.建表语句
create external table ads_payment_daycount(
dt string comment '统计日期',
order_count bigint comment '单日支付笔数',
order_amount bigint comment '单日支付金额',
payment_user_count bigint comment '单日支付人数',
payment_sku_count bigint comment '单日支付商品数',
payment_avg_time decimal(16,2) comment '下单到支付的平均时长,取分钟数'
) comment '支付信息统计'
row format delimited fields terminated by '\t'
location '/warehouse/gmall/ads/ads_payment_daycount';
2.数据导入
insert into table ads_payment_daycount
select
tmp_payment.dt,
tmp_payment.payment_count,
tmp_payment.payment_amount,
tmp_payment.payment_user_count,
tmp_skucount.payment_sku_count,
tmp_time.payment_avg_time
from
(
select
'2020-06-14' dt,
sum(payment_count) payment_count,
sum(payment_amount) payment_amount,
sum(if(payment_count>0,1,0)) payment_user_count
from dws_user_action_daycount
where dt='2020-06-14'
)tmp_payment
join
(
select
'2020-06-14' dt,
sum(if(payment_count>0,1,0)) payment_sku_count
from dws_sku_action_daycount
where dt='2020-06-14'
)tmp_skucount on tmp_payment.dt=tmp_skucount.dt
join
(
select
'2020-06-14' dt,
sum(unix_timestamp(payment_time)-unix_timestamp(create_time))/count(*)/60 payment_avg_time
from dwd_fact_order_info
where dt='2020-06-14'
and payment_time is not null
)tmp_time on tmp_payment.dt=tmp_time.dt;
3.品牌复购率
1.建表语句
create external table ads_sale_tm_category1_stat_mn
(
tm_id string comment '品牌id',
category1_id string comment '1级品类id ',
category1_name string comment '1级品类名称 ',
buycount bigint comment '购买人数',
buy_twice_last bigint comment '两次以上购买人数',
buy_twice_last_ratio decimal(16,2) comment '单次复购率',
buy_3times_last bigint comment '三次以上购买人数',
buy_3times_last_ratio decimal(16,2) comment '多次复购率',
stat_mn string comment '统计月份',
stat_date string comment '统计日期'
) COMMENT '品牌复购率统计'
row format delimited fields terminated by '\t'
location '/warehouse/gmall/ads/ads_sale_tm_category1_stat_mn/';
2.数据导入
with
tmp_order as
(
select
user_id,
order_stats_struct.sku_id sku_id,
sum(order_stats_struct.order_count) order_count
from dws_user_action_daycount lateral view explode(order_detail_stats) tmp as order_stats_struct
where date_format(dt,'yyyy-MM')=date_format('2020-06-14','yyyy-MM')
group by user_id,order_stats_struct.sku_id
),
tmp_sku as
(
select
id,
tm_id,
category1_id,
category1_name
from dwd_dim_sku_info
where dt='2020-06-14'
)
insert into table ads_sale_tm_category1_stat_mn
select
tm_id,
category1_id,
category1_name,
sum(if(order_count>=1,1,0)) buycount,
sum(if(order_count>=2,1,0)) buyTwiceLast,
sum(if(order_count>=2,1,0))/sum( if(order_count>=1,1,0)) buyTwiceLastRatio,
sum(if(order_count>=3,1,0)) buy3timeLast ,
sum(if(order_count>=3,1,0))/sum( if(order_count>=1,1,0)) buy3timeLastRatio ,
date_format('2020-06-14' ,'yyyy-MM') stat_mn,
'2020-06-14' stat_date
from
(
select
tmp_order.user_id,
tmp_sku.category1_id,
tmp_sku.category1_name,
tmp_sku.tm_id,
sum(order_count) order_count -- 一个用户有可能买一个品牌下的多个商品
from tmp_order
join tmp_sku
on tmp_order.sku_id=tmp_sku.id
group by tmp_order.user_id,tmp_sku.category1_id,tmp_sku.category1_name,tmp_sku.tm_id
)tmp
group by tm_id, category1_id, category1_name;
6.地区主题
1.地区主题信息
1.建表语句
create external table ads_area_topic(
`dt` string COMMENT '统计日期',
`id` bigint COMMENT '编号',
`province_name` string COMMENT '省份名称',
`area_code` string COMMENT '地区编码',
`iso_code` string COMMENT 'iso编码',
`region_id` string COMMENT '地区ID',
`region_name` string COMMENT '地区名称',
`login_day_count` bigint COMMENT '当天活跃设备数',
`order_day_count` bigint COMMENT '当天下单次数',
`order_day_amount` decimal(16,2) COMMENT '当天下单金额',
`payment_day_count` bigint COMMENT '当天支付次数',
`payment_day_amount` decimal(16,2) COMMENT '当天支付金额'
) COMMENT '地区主题信息'
row format delimited fields terminated by '\t'
location '/warehouse/gmall/ads/ads_area_topic/';
2.数据装载
insert into table ads_area_topic
select
'2020-06-14',
id,
province_name,
area_code,
iso_code,
region_id,
region_name,
login_day_count,
order_day_count,
order_day_amount,
payment_day_count,
payment_day_amount
from dwt_area_topic;
7.ADS层导入脚本
1.在/home/atguigu/bin目录下创建脚本dwt_to_ads.sh
vim dwt_to_ads.sh
2.在脚本中填写如下内容
#!/bin/bash
hive=/opt/module/hive/bin/hive
APP=gmall
# 如果是输入的日期按照取输入日期;如果没输入日期取当前时间的前一天
if [ -n "$1" ] ;then
do_date=$1
else
do_date=`date -d "-1 day" +%F`
fi
sql="
set mapreduce.job.queuename=hive;
insert into table ${APP}.ads_uv_count
select
'$do_date' dt,
daycount.ct,
wkcount.ct,
mncount.ct,
if(date_add(next_day('$do_date','MO'),-1)='$do_date','Y','N') ,
if(last_day('$do_date')='$do_date','Y','N')
from
(
select
'$do_date' dt,
count(*) ct
from ${APP}.dwt_uv_topic
where login_date_last='$do_date'
)daycount join
(
select
'$do_date' dt,
count (*) ct
from ${APP}.dwt_uv_topic
where login_date_last>=date_add(next_day('$do_date','MO'),-7)
and login_date_last<= date_add(next_day('$do_date','MO'),-1)
) wkcount on daycount.dt=wkcount.dt
join
(
select
'$do_date' dt,
count (*) ct
from ${APP}.dwt_uv_topic
where date_format(login_date_last,'yyyy-MM')=date_format('$do_date','yyyy-MM')
)mncount on daycount.dt=mncount.dt;
insert into table ${APP}.ads_new_mid_count
select
login_date_first,
count(*)
from ${APP}.dwt_uv_topic
where login_date_first='$do_date'
group by login_date_first;
insert into table ${APP}.ads_silent_count
select
'$do_date',
count(*)
from ${APP}.dwt_uv_topic
where login_date_first=login_date_last
and login_date_last<=date_add('$do_date',-7);
insert into table ${APP}.ads_back_count
select
'$do_date',
concat(date_add(next_day('$do_date','MO'),-7),'_', date_add(next_day('$do_date','MO'),-1)),
count(*)
from
(
select
mid_id
from ${APP}.dwt_uv_topic
where login_date_last>=date_add(next_day('$do_date','MO'),-7)
and login_date_last<= date_add(next_day('$do_date','MO'),-1)
and login_date_first<date_add(next_day('$do_date','MO'),-7)
)current_wk
left join
(
select
mid_id
from ${APP}.dws_uv_detail_daycount
where dt>=date_add(next_day('$do_date','MO'),-7*2)
and dt<= date_add(next_day('$do_date','MO'),-7-1)
group by mid_id
)last_wk
on current_wk.mid_id=last_wk.mid_id
where last_wk.mid_id is null;
insert into table ${APP}.ads_wastage_count
select
'$do_date',
count(*)
from
(
select
mid_id
from ${APP}.dwt_uv_topic
where login_date_last<=date_add('$do_date',-7)
group by mid_id
)t1;
insert into table ${APP}.ads_user_retention_day_rate
select
'$do_date',--统计日期
date_add('$do_date',-1),--新增日期
1,--留存天数
sum(if(login_date_first=date_add('$do_date',-1) and login_date_last='$do_date',1,0)),--$do_date的1日留存数
sum(if(login_date_first=date_add('$do_date',-1),1,0)),--$do_date新增
sum(if(login_date_first=date_add('$do_date',-1) and login_date_last='$do_date',1,0))/sum(if(login_date_first=date_add('$do_date',-1),1,0))*100
from ${APP}.dwt_uv_topic
union all
select
'$do_date',--统计日期
date_add('$do_date',-2),--新增日期
2,--留存天数
sum(if(login_date_first=date_add('$do_date',-2) and login_date_last='$do_date',1,0)),--$do_date的2日留存数
sum(if(login_date_first=date_add('$do_date',-2),1,0)),--$do_date新增
sum(if(login_date_first=date_add('$do_date',-2) and login_date_last='$do_date',1,0))/sum(if(login_date_first=date_add('$do_date',-2),1,0))*100
from ${APP}.dwt_uv_topic
union all
select
'$do_date',--统计日期
date_add('$do_date',-3),--新增日期
3,--留存天数
sum(if(login_date_first=date_add('$do_date',-3) and login_date_last='$do_date',1,0)),--$do_date的3日留存数
sum(if(login_date_first=date_add('$do_date',-3),1,0)),--$do_date新增
sum(if(login_date_first=date_add('$do_date',-3) and login_date_last='$do_date',1,0))/sum(if(login_date_first=date_add('$do_date',-3),1,0))*100
from ${APP}.dwt_uv_topic;
insert into table ${APP}.ads_continuity_wk_count
select
'$do_date',
concat(date_add(next_day('$do_date','MO'),-7*3),'_',date_add(next_day('$do_date','MO'),-1)),
count(*)
from
(
select
mid_id
from
(
select
mid_id
from ${APP}.dws_uv_detail_daycount
where dt>=date_add(next_day('$do_date','monday'),-7)
and dt<=date_add(next_day('$do_date','monday'),-1)
group by mid_id
union all
select
mid_id
from ${APP}.dws_uv_detail_daycount
where dt>=date_add(next_day('$do_date','monday'),-7*2)
and dt<=date_add(next_day('$do_date','monday'),-7-1)
group by mid_id
union all
select
mid_id
from ${APP}.dws_uv_detail_daycount
where dt>=date_add(next_day('$do_date','monday'),-7*3)
and dt<=date_add(next_day('$do_date','monday'),-7*2-1)
group by mid_id
)t1
group by mid_id
having count(*)=3
)t2;
insert into table ${APP}.ads_continuity_uv_count
select
'$do_date',
concat(date_add('$do_date',-6),'_','$do_date'),
count(*)
from
(
select mid_id
from
(
select mid_id
from
(
select
mid_id,
date_sub(dt,rank) date_dif
from
(
select
mid_id,
dt,
rank() over(partition by mid_id order by dt) rank
from ${APP}.dws_uv_detail_daycount
where dt>=date_add('$do_date',-6) and dt<='$do_date'
)t1
)t2
group by mid_id,date_dif
having count(*)>=3
)t3
group by mid_id
)t4;
insert into table ${APP}.ads_user_topic
select
'$do_date',
sum(if(login_date_last='$do_date',1,0)),
sum(if(login_date_first='$do_date',1,0)),
sum(if(payment_date_first='$do_date',1,0)),
sum(if(payment_count>0,1,0)),
count(*),
sum(if(login_date_last='$do_date',1,0))/count(*),
sum(if(payment_count>0,1,0))/count(*),
sum(if(login_date_first='$do_date',1,0))/sum(if(login_date_last='$do_date',1,0))
from ${APP}.dwt_user_topic;
with
tmp_uv as
(
select
'$do_date' dt,
sum(if(array_contains(pages,'home'),1,0)) home_count,
sum(if(array_contains(pages,'good_detail'),1,0)) good_detail_count
from
(
select
mid_id,
collect_set(page_id) pages
from ${APP}.dwd_page_log
where dt='$do_date'
and page_id in ('home','good_detail')
group by mid_id
)tmp
),
tmp_cop as
(
select
'$do_date' dt,
sum(if(cart_count>0,1,0)) cart_count,
sum(if(order_count>0,1,0)) order_count,
sum(if(payment_count>0,1,0)) payment_count
from ${APP}.dws_user_action_daycount
where dt='$do_date'
)
insert into table ${APP}.ads_user_action_convert_day
select
tmp_uv.dt,
tmp_uv.home_count,
tmp_uv.good_detail_count,
tmp_uv.good_detail_count/tmp_uv.home_count*100,
tmp_cop.cart_count,
tmp_cop.cart_count/tmp_uv.good_detail_count*100,
tmp_cop.order_count,
tmp_cop.order_count/tmp_cop.cart_count*100,
tmp_cop.payment_count,
tmp_cop.payment_count/tmp_cop.order_count*100
from tmp_uv
join tmp_cop
on tmp_uv.dt=tmp_cop.dt;
insert into table ${APP}.ads_product_info
select
'$do_date' dt,
sku_num,
spu_num
from
(
select
'$do_date' dt,
count(*) sku_num
from
${APP}.dwt_sku_topic
) tmp_sku_num
join
(
select
'$do_date' dt,
count(*) spu_num
from
(
select
spu_id
from
${APP}.dwt_sku_topic
group by
spu_id
) tmp_spu_id
) tmp_spu_num
on
tmp_sku_num.dt=tmp_spu_num.dt;
insert into table ${APP}.ads_product_sale_topN
select
'$do_date' dt,
sku_id,
payment_amount
from
${APP}.dws_sku_action_daycount
where
dt='$do_date'
order by payment_amount desc
limit 10;
insert into table ${APP}.ads_product_favor_topN
select
'$do_date' dt,
sku_id,
favor_count
from
${APP}.dws_sku_action_daycount
where
dt='$do_date'
order by favor_count desc
limit 10;
insert into table ${APP}.ads_product_cart_topN
select
'$do_date' dt,
sku_id,
cart_count
from
${APP}.dws_sku_action_daycount
where
dt='$do_date'
order by cart_count desc
limit 10;
insert into table ${APP}.ads_product_refund_topN
select
'$do_date',
sku_id,
refund_last_30d_count/payment_last_30d_count*100 refund_ratio
from ${APP}.dwt_sku_topic
order by refund_ratio desc
limit 10;
insert into table ${APP}.ads_appraise_bad_topN
select
'$do_date' dt,
sku_id,
appraise_bad_count/(appraise_good_count+appraise_mid_count+appraise_bad_count+appraise_default_count) appraise_bad_ratio
from
${APP}.dws_sku_action_daycount
where
dt='$do_date'
order by appraise_bad_ratio desc
limit 10;
insert into table ${APP}.ads_order_daycount
select
'$do_date',
sum(order_count),
sum(order_amount),
sum(if(order_count>0,1,0))
from ${APP}.dws_user_action_daycount
where dt='$do_date';
insert into table ${APP}.ads_payment_daycount
select
tmp_payment.dt,
tmp_payment.payment_count,
tmp_payment.payment_amount,
tmp_payment.payment_user_count,
tmp_skucount.payment_sku_count,
tmp_time.payment_avg_time
from
(
select
'$do_date' dt,
sum(payment_count) payment_count,
sum(payment_amount) payment_amount,
sum(if(payment_count>0,1,0)) payment_user_count
from ${APP}.dws_user_action_daycount
where dt='$do_date'
)tmp_payment
join
(
select
'$do_date' dt,
sum(if(payment_count>0,1,0)) payment_sku_count
from ${APP}.dws_sku_action_daycount
where dt='$do_date'
)tmp_skucount on tmp_payment.dt=tmp_skucount.dt
join
(
select
'$do_date' dt,
sum(unix_timestamp(payment_time)-unix_timestamp(create_time))/count(*)/60 payment_avg_time
from ${APP}.dwd_fact_order_info
where dt='$do_date'
and payment_time is not null
)tmp_time on tmp_payment.dt=tmp_time.dt;
with
tmp_order as
(
select
user_id,
order_stats_struct.sku_id sku_id,
sum(order_stats_struct.order_count) order_count
from ${APP}.dws_user_action_daycount lateral view explode(order_detail_stats) tmp as order_stats_struct
where date_format(dt,'yyyy-MM')=date_format('$do_date','yyyy-MM')
group by user_id,order_stats_struct.sku_id
),
tmp_sku as
(
select
id,
tm_id,
category1_id,
category1_name
from ${APP}.dwd_dim_sku_info
where dt='$do_date'
)
insert into table ${APP}.ads_sale_tm_category1_stat_mn
select
tm_id,
category1_id,
category1_name,
sum(if(order_count>=1,1,0)) buycount,
sum(if(order_count>=2,1,0)) buyTwiceLast,
sum(if(order_count>=2,1,0))/sum( if(order_count>=1,1,0)) buyTwiceLastRatio,
sum(if(order_count>=3,1,0)) buy3timeLast ,
sum(if(order_count>=3,1,0))/sum( if(order_count>=1,1,0)) buy3timeLastRatio ,
date_format('$do_date' ,'yyyy-MM') stat_mn,
'$do_date' stat_date
from
(
select
tmp_order.user_id,
tmp_sku.category1_id,
tmp_sku.category1_name,
tmp_sku.tm_id,
sum(order_count) order_count
from tmp_order
join tmp_sku
on tmp_order.sku_id=tmp_sku.id
group by tmp_order.user_id,tmp_sku.category1_id,tmp_sku.category1_name,tmp_sku.tm_id
)tmp
group by tm_id, category1_id, category1_name;
insert into table ${APP}.ads_area_topic
select
'$do_date',
id,
province_name,
area_code,
iso_code,
region_id,
region_name,
login_day_count,
order_day_count,
order_day_amount,
payment_day_count,
payment_day_amount
from ${APP}.dwt_area_topic;
"
$hive -e "$sql"
3.增加脚本执行权限
chmod 777 dwt_to_ads.sh