numpy转置及轴对换transpose函数简单例子理解

本文介绍了numpy中数组转置的两种方法:使用T属性和transpose函数。通过实例展示了如何对二维和三维数组进行转置操作,并探讨了swapaxes方法在轴对换中的应用。
摘要由CSDN通过智能技术生成

数组转置和轴对换

最近学习numpy的相关函数发现这个轴对换十分难理解,所以自己也写了点东西帮助自己理解。

1、利用数组中的T属性进行转置
arr = np.arange(15).reshape((3,5))

arr
array([[ 0,  1,  2,  3,  4],
       [ 5,  6,  7,  8,  9],
       [10, 11, 12, 13, 14]])

arr.T
array([[ 0,  5, 10],
       [ 1,  6, 11],
       [ 2,  7, 12],
       [ 3,  8, 13],
       [ 4,  9, 14]])

2、transpose,应用于高维数组
arr = np.arange(12).reshape((2,2,3))

arr
array([[[ 0,  1,  2],
        [ 3,  4,  5]],

       [[ 6,  7,  8],
        [ 9, 10, 11]]])

arr.transpose((1,0,2)) 
array([[[ 0,  1,  2],
        [ 6,  7,  8]],

       [[ 3,  4,  5],
        [ 9, 10, 11]]])

用T进行低维度的转置很容易就能理解,而对于高维数组需要进行轴对换,就比较费脑子了。
我们先看函数的原型:


评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值