数组转置和轴对换
最近学习numpy的相关函数发现这个轴对换十分难理解,所以自己也写了点东西帮助自己理解。
1、利用数组中的T属性进行转置arr = np.arange(15).reshape((3,5))
arr
array([[ 0, 1, 2, 3, 4],
[ 5, 6, 7, 8, 9],
[10, 11, 12, 13, 14]])
arr.T
array([[ 0, 5, 10],
[ 1, 6, 11],
[ 2, 7, 12],
[ 3, 8, 13],
[ 4, 9, 14]])
arr = np.arange(15).reshape((3,5))
arr
array([[ 0, 1, 2, 3, 4],
[ 5, 6, 7, 8, 9],
[10, 11, 12, 13, 14]])
arr.T
array([[ 0, 5, 10],
[ 1, 6, 11],
[ 2, 7, 12],
[ 3, 8, 13],
[ 4, 9, 14]])
2、transpose,应用于高维数组arr = np.arange(12).reshape((2,2,3))
arr
array([[[ 0, 1, 2],
[ 3, 4, 5]],
[[ 6, 7, 8],
[ 9, 10, 11]]])
arr.transpose((1,0,2))
array([[[ 0, 1, 2],
[ 6, 7, 8]],
[[ 3, 4, 5],
[ 9, 10, 11]]])
arr = np.arange(12).reshape((2,2,3))
arr
array([[[ 0, 1, 2],
[ 3, 4, 5]],
[[ 6, 7, 8],
[ 9, 10, 11]]])
arr.transpose((1,0,2))
array([[[ 0, 1, 2],
[ 6, 7, 8]],
[[ 3, 4, 5],
[ 9, 10, 11]]])
用T进行低维度的转置很容易就能理解,而对于高维数组需要进行轴对换,就比较费脑子了。
我们先看函数的原型: