120. 三角形最小路径和

给定一个三角形,找出自顶向下的最小路径和。每一步只能移动到下一行中相邻的结点上。

例如,给定三角形:

[
     [2],
    [3,4],
   [6,5,7],
  [4,1,8,3]
]

自顶向下的最小路径和为 11(即,3 + 1 = 11)。

说明:

如果你可以只使用 O(n) 的额外空间(n 为三角形的总行数)来解决这个问题,那么你的算法会很加分。

自上而下动态规划

nums[i][j]表示由元素A[0][0]到A[i][j]的最小路径和


class Solution {
public:
    int minimumTotal(vector<vector<int>>& triangle) {
        vector<vector<int>> nums (triangle.size(),vector<int>(triangle.size(),0));
        nums[0][0]=triangle[0][0];
       // int min_value=INT_MAX;
        for(int i=1;i<triangle.size();i++)
            
            for(int j=0;j<triangle[i].size();j++){
                if(j==0)
                    nums[i][j]=nums[i-1][j]+triangle[i][j];
                
                else if(j==triangle[i].size()-1)
                    nums[i][j]=nums[i-1][j-1]+triangle[i][j];
                else 
                    nums[i][j]=min(nums[i-1][j-1],nums[i-1][j])+triangle[i][j];
      
                // if(i==triangle.size()-1)
                //     min_value=min(min_value,nums[i][j]);
            }
                 int min_value=nums[triangle.size()-1][0];
                for(int i=1;i<triangle[triangle.size()-1].size();i++)
                    min_value=min(min_value,nums[triangle.size()-1][i]);
            
       return min_value;   
    }
};
c++中正负数比较大小出错
class Solution {
public:
    int minimumTotal(vector<vector<int>>& triangle) {
        vector<vector<int>> nums (triangle.size(),vector<int>(triangle.size(),0));
        nums[0][0]=triangle[0][0];
       int min_value=INT_MAX;
        for(int i=1;i<triangle.size();i++)
            
            for(int j=0;j<triangle[i].size();j++){
                if(j==0)
                    nums[i][j]=nums[i-1][j]+triangle[i][j];
                
                else if(j==triangle[i].size()-1)
                    nums[i][j]=nums[i-1][j-1]+triangle[i][j];
                else 
                    nums[i][j]=min(nums[i-1][j-1],nums[i-1][j])+triangle[i][j];
      
                if(i==triangle.size()-1)
                    min_value=min(min_value,nums[i][j]);
            }
       return min_value;   
    }
};

在这里插入图片描述

自低向上动态规划

从下到上计算,计算倒数第二行的最小路径,计算倒数第三行的最小路径,……计算第二行,计算第一行

 

nums[i][j]表示由元素A[i][j]到j最后的最小路径和

class Solution {
public:
    int minimumTotal(vector<vector<int>>& triangle) {
        vector<vector<int>> nums (triangle.size(),vector<int>(triangle.size(),0));
        nums[0][0]=triangle[0][0];
        for(int i=triangle.size()-1;i>=0;i--)
            
            for(int j=0;j<triangle[i].size();j++){
             
                    if(i==triangle.size()-1)
                        nums[i][j]=triangle[i][j];
                    else
                        nums[i][j]=min(nums[i+1][j+1],nums[i+1][j])+triangle[i][j];
            }
       return nums[0][0];   
    }
};
空间优化

class Solution {
public:
    int minimumTotal(vector<vector<int>>& triangle) {

        for(int i=triangle.size()-1;i>=0;i--)
            
            for(int j=0;j<triangle[i].size();j++){
                if(i==triangle.size()-1)
                    triangle[i][j]=triangle[i][j];
                else
                    triangle[i][j]=min(triangle[i+1][j+1],triangle[i+1][j])+triangle[i][j];
            }
       return triangle[0][0];   
    }
};
利用一维滚动数组实现动态规化空间算法优化为O(N)
class Solution {
public:
    int minimumTotal(vector<vector<int>>& triangle) {
        vector<int> nums (triangle.size(),0);

        for(int i=triangle.size()-1;i>=0;i--)
            
            for(int j=0;j<triangle[i].size();j++){
             
                    if(i==triangle.size()-1)
                        nums[j]=triangle[i][j];
                    else
                        nums[j]=min(nums[j+1],nums[j])+triangle[i][j];
            }
       return nums[0];   
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值