- 💡该教程包含大量的原创首发改进方式, 所有文章都是原创首发改进内容🚀
降低改进难度,改进点包含最新最全的Backbone部分、Neck部分、Head部分、注意力机制部分、自注意力机制部分等完整教程🚀 - 💡本篇文章基于
基于 YOLOv7、YOLOv5 等网络该X架构精度在VisDrone数据集上远远超越YOLOv5模型、同时超越TPH-YOLOv5模型表现!首发最新改进一种强大性能的全新架构(附YOLOv7改进), 新范式高效涨点,打造高性能、轻量级检测器 改进。 - 本文提出 原创
X结构(详情见文中内容),并进行深度改进优化,将参数量和计算量控制在合理范围,内容包括理论部分和改进全部源代码,代码直接运行🚀
💡🚀🚀🚀内含·改进源代码·,按步骤操作运行改进后的代码即可
重点:🔥🔥🔥有同学已经使用这个 创新点 在自己的数据集改进做完实验: 在小目标检测上的效果很强!mAP精度涨点了!!实测改进有效,有点强
- 注:该改进结构源代码,全网其他地方都不会有.
文章目录
一、论文理论部分

具体细节看这篇论文:https://arxiv.org/abs/2201.09792
1.介绍

3.在VisDrone数据集上表现(超越YOLOv5、TPH-YOLOv5等模型)
| 模型 | mAP |
|---|---|
| YOLOv5s | 0.18063 |
| YOLOv5L | 0.236 |
| TPH-YOLOv5 | 0.38152 |
| 改进该架构模型 | 0.3 |

本文介绍了YOLOv5的改进版——YOLOv5_CSPCM,它在VisDrone数据集上的表现超越了YOLOv5和TPH-YOLOv5。作者提出了原创的结构优化,通过添加CSPCM模块,实现了性能提升,同时保持了模型的轻量化。文章提供了详细的改进代码,包括cspcm.py的实现和配置文件YOLOv5_CSPCM.yaml及YOLOv5_ConvMix.yaml。实验证明,这些改进在小目标检测上提高了mAP精度,且此改进结构的源代码为独家发布。
订阅专栏 解锁全文
4万+

被折叠的 条评论
为什么被折叠?



