芒果YOLOv5改进26:损失函数篇之GFL:首发最新|NeurIPS顶会论文,模型无损涨点,改进广义焦点损失Generalized Focal Loss,将焦点损失从其离散形式推广到连续形式

本文深入探讨了Generalized Focal Loss(GFL),一种改进的目标检测损失函数,用于提升YOLOv5和YOLOv8的性能。作者提供了理论分析及YOLOv5应用GFL的实践教程,包括配置文件修改、核心代码实现等步骤,实验证明该改进能有效提高模型的mAP精度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

💡该教程为改进进阶指南,属于《芒果书》📚系列,包含大量的原创首发改进方式, 所有文章都是全网首发原创改进内容🚀
💡本篇文章 基于 YOLOv5、YOLOv8芒果改进YOLO系列:芒果改进YOLOv5系列:NeurIPS顶会论文|首发最新改进 Generalized Focal Loss 广义焦点损失,将焦点损失从其离散形式推广到连续形式,以实现成功优化,让模型无损涨点、打造全新YOLOv5检测器

💡🚀🚀🚀内含·改进源代码·,按步骤操作运行改进后的代码即可
重点:🔥🔥🔥有多个同学已经使用这个 GFL创新点自己的数据集改进做完实验: 在目标检测上的效果很强!mAP精度涨点!!实测改进有效,有点强

本文内容包括理论部分改进源代码🚀 为原创内容,可以直接用来写论文

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

芒果学AI

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值