💡只订阅这一个专栏即可阅读:芒果YOLOv9所有改进内容
- 💡本篇文章 基于YOLOv9
芒果
改进YOLO系列:当MAE遇见卷积操作,高效涨点最新ConvNeXt-V2版本使用 Masked Autoencoders 共同设计和缩放、打造全新YOLOv9检测器
。 重点
:🔥🔥🔥有不少同学已经反应 专栏的教程 提供的网络结构 在数据集上有效涨点!!!
🌟进阶专栏内容持续更新中🎈☁️🏅️,订阅了该专栏的读者·私信博主
·加·创新点YOLOv9交流群- 本文内容包括
理论部分
和改进源代码部分
🚀 为原创内容,可以直接用来写论文
一、理论部分 + YOLOv9代码改进
本文的重点是探讨如何在同一框架下共同设计网络架构和掩码自编码器,目的是使基于掩码的自监督学习对 ConvNeXt 模型有效,并获得与使用 Transformer 相当的性能。
<