芒果YOLOv9改进19:主干Backbone篇之MAE结构:当MAE遇见卷积操作,最新原创 ConvNeXtv2 升级版,高效涨点,使用 Masked Autoencoders 共同设计和缩放

本文介绍了将Masked Autoencoders (MAE) 结构应用于YOLOv9的改进,提出了一种结合卷积操作的新型网络设计,提升了目标检测模型的效率和性能。详细讨论了理论部分,包括论文方法、网络设计和实验,提供了代码修改指南,便于直接应用于实践。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

💡只订阅这一个专栏即可阅读:芒果YOLOv9所有改进内容

一、理论部分 + YOLOv9代码改进

请添加图片描述
本文的重点是探讨如何在同一框架下共同设计网络架构和掩码自编码器,目的是使基于掩码的自监督学习对 ConvNeXt 模型有效,并获得与使用 Transformer 相当的性能。<

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

芒果学AI

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值