芒果YOLOv10改进136:注意力机制MLLA|即插即用:融合Mamba设计精髓的线性注意力视觉Transformer

💡本篇内容:芒果YOLOv10改进136:即插即用,最新注意力机制MLLA:融合 Mamba 设计精髓的线性注意力视觉Transformer

MLLA|Mamba-Like Linear Attention 模块 | 即插即用
该模块将选择性的状态空间模型和线性注意力在一个统一公式中进行了重新阐述,将Mamba重新定义为具有六个主要区别的线性注意力Transformer的变体:输入门、遗忘门、捷径、无注意力归一化、单头和修改的块设计。

改进源码教程 | 详情如下🥇

  • 即插即用 融合 Mamba 设计精髓的线性注意力视觉Transformer MLLA
  • 包括改进所需的 核心结构代码 文件 以及网络结构yaml配置

一、融合Mamba设计的线性注意力MLLA 理论+YOLOv10 代码改进

1.1 理论介绍

在这里插入图片描述

Mamba是一种具有线性计算复杂度的有效状态空间模型,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

芒果学AI

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值