一、数据结构
HashMap采用链地址法解决哈希冲突,因此其结构就是由数组+链表组成,数组是HashMap的主体,链表则主要是为了解决哈希冲突而存在的,如果对应的数组位置不含链表,那么查找的时间复杂度仅为O(1),同时不管有无链表,插入操作的时间复杂度也一直为O(1),因为最新的Entry会插入链表头部。当实例化一个HashMap时,系统会创建一个长度为Capacity的Entry数组,这个长度被称为容量(Capacity),在这个数组中可以存放元素的位置我们称之为“桶”(bucket),每个bucket都有自己的索引,系统可以根据索引快速的查找bucket中的元素。每个桶中就可以有一个Entry对象,然后这个Entry对象可以用next指向下一个Entry,最终形成一个Entry链。Entry是HashMap的基本组成单元,每一个Entry都包含一个key-value键值对、指向下一个Entry对象的引用next以及对key的hashcode进行hash运算后得到的hash值,hash值就是为了找到该key应该存储的数组位置。如图:
二、源码解读
1.重要属性
//默认初始化容量是1向左移4位,即16,但并未直接写16,因为操作系统最终会使用二进制进行计算,这样写省略了转换过程,提高了效率。
static final int DEFAULT_INITIAL_CAPACITY = 1 << 4;
//最大容量是2的30次方,是30次方的主要原因是int类型是32位整型。
//Java的原始类型里没有无符号类型。因此首位是符号位 正数为0,负数为1
//所以剩下的31位就是正数占30位,负数占30位。
static final int MAXIMUM_CAPACITY = 1 << 30;
//threshold的最大值
static final int ALTERNATIVE_HASHING_THRESHOLD_DEFAULT = Integer.MAX_VALUE;
//默认负载因子,是0.75的原因主要是“哈希冲突”和“空间利用率”矛盾的一个折中
//加载因子越大,填满的元素越多,空间利用率越高,但冲突的机会加大了。
//从源码中的注释可以知道hash桶中元素个数遵循泊松分布,在负载因子为0.75的时候
//桶中元素个数超过8个几乎是不可能的,所以0.75是解决“哈希冲突”和“空间利用率”矛盾比较优的一个值。
static final float DEFAULT_LOAD_FACTOR = 0.75f;
//table数组用于存储Entry对象
transient Entry<K,V>[] table = (Entry<K,V>[]) EMPTY_TABLE;
//已使用的数组位置的个数,用于判断是否需要扩容
transient int size;
//阈值,当table == {}时,该值为初始容量(初始容量默认为16);当table被填充了
//也就是为table分配内存空间后,threshold一般为 capacity*loadFactory。
//HashMap在进行扩容时需要参考threshold
int threshold;
//负载因子,表示table的填充度,默认是0.75
final float loadFactor;
//由于HashMap不是线程安全的,所以在迭代的时候,会将modCount赋值到迭代器的expectedModCount属性中
//如果在迭代的过程中HashMap被其他线程修改了,modCount的数值就会发生变化,
//这时候expectedModCount和ModCount不相等,迭代器就会抛出ConcurrentModificationException()异常
transient int modCount;
//对哈希值的散列优化产生影响
transient int hashSeed = 0;
2.构造方法
//通过初始容量和状态因子构造HashMap,其他三个构造方法都会调用此方法
public HashMap(int initialCapacity, float loadFactor) {
if (initialCapacity < 0)//参数有效性检查
throw new IllegalArgumentException("Illegal initial capacity: " + initialCapacity);
if (initialCapacity > MAXIMUM_CAPACITY)//参数有效性检查
initialCapacity = MAXIMUM_CAPACITY;
if (loadFactor <= 0 || Float.isNaN(loadFactor))//参数有效性检查
throw new IllegalArgumentException("Illegal load factor: " +
loadFactor);
this.loadFactor = loadFactor;
threshold = initialCapacity;
init();//init方法在HashMap中没有实际实现,不过在其子类如 linkedHashMap中就会有对应实现
}
//通过扩容因子构造HashMap,容量为默认值,即16
public HashMap(int initialCapacity) {
this(initialCapacity, DEFAULT_LOAD_FACTOR);
}
//装载因子取0.75,容量取16,构造HashMap
public HashMap() {
this(DEFAULT_INITIAL_CAPACITY, DEFAULT_LOAD_FACTOR);
}
//通过其他Map来初始化HashMap,容量通过传入map的size来计算,装载因子取0.75
public HashMap(Map<? extends K, ? extends V> m) {
this(Math.max((int) (m.size() / DEFAULT_LOAD_FACTOR) + 1, DEFAULT_INITIAL_CAPACITY), DEFAULT_LOAD_FACTOR);
inflateTable(threshold);//初始化HashMap底层的数组结构
putAllForCreate(m);//添加m中的元素
}
3.get()
// 获取key对应的value
public V get(Object key) {
if (key == null)
//如果key为null,调用getForNullKey()
return getForNullKey();
//key不为null,调用getEntry(key);
Entry<K,V> entry = getEntry(key);
return null == entry ? null : entry.getValue();
}
//当key为null时,获取value
private V getForNullKey() {
if (size == 0) {
return null;//链表为空,返回null
}
//链表不为空,将“key为null”的元素存储在table[0]位置,但不一定是该链表的第一个位置!
for (Entry<K,V> e = table[0]; e != null; e = e.next) {
if (e.key == null)
return e.value;
}
return null;
}
//key不为null,获取value
final Entry<K,V> getEntry(Object key) {
if (size == 0) {//判断链表中是否有值
//链表中没值,也就是没有value
return null;
}
//链表中有值,获取key的hash值
int hash = (key == null) ? 0 : hash(key);
// 在“该hash值对应的链表”上查找“键值等于key”的元素
for (Entry<K,V> e = table[indexFor(hash, table.length)];
e != null;
e = e.next) {
Object k;
//判断key是否相同
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))
return e;//key相等,返回相应的value
}
return null;//链表中没有相应的key
}
4.put()/putForNullKey()
// 将“key-value”添加到HashMap中
public V put(K key, V value) {
if (table == EMPTY_TABLE) {
inflateTable(threshold);
}
if (key == null)// 若“key为null”,则将该键值对添加到table[0]中。
return putForNullKey(value);
// 若“key不为null”,则计算该key的哈希值,然后将其添加到该哈希值对应的链表中。
int hash = hash(key);//获取key的hash值
int i = indexFor(hash, table.length);
for (Entry<K,V> e = table[i]; e != null; e = e.next) {
Object k;
if (e.hash == hash && ((k = e.key) == key || key.equals(k))) {
// 若“该key”对应的键值对已经存在,则用新的value取代旧的value。然后退出!
V oldValue = e.value;
e.value = value;
e.recordAccess(this);
return oldValue;
}
}
// 若“key”对应的键值对不存在,则将“key-value”添加到table中
modCount++;
//将key-value添加到table[i]处
addEntry(hash, key, value, i);
return null;
}
//插入键为null的值
private V putForNullKey(V value) {
//key为null的值永远被放在哈希表的第一个桶中
for (Entry<K,V> e = table[0]; e != null; e = e.next) {
//一旦找到键为null,替换旧值
if (e.key == null) {
V oldValue = e.value;
e.value = value;
e.recordAccess(this);
return oldValue;
}
}
//如果第一个桶还是空则插入新节点
modCount++;
addEntry(0, null, value, 0);
return null;
}
5.addEntry()/createEntry()
void addEntry(int hash, K key, V value, int bucketIndex) {
//先判断大小
if ((size >= threshold) && (null != table[bucketIndex])) {
//若HashMap的实际大小不小于 “阈值”,则进行扩容
resize(2 * table.length);//每次扩容2倍
hash = (null != key) ? hash(key) : 0;
bucketIndex = indexFor(hash, table.length);
}
//新增Entry,将“key-value”插入指定位置,bucketIndex是位置索引
createEntry(hash, key, value, bucketIndex);
}
void createEntry(int hash, K key, V value, int bucketIndex) {
// 保存“bucketIndex”位置的值到“e”中
Entry<K,V> e = table[bucketIndex];
// 设置“bucketIndex”位置的元素为“新Entry”,
// 设置“e”为“新Entry的下一个节点”
table[bucketIndex] = new Entry<>(hash, key, value, e);
//已使用数组位置+1
size++;
}
//进行头插,创建一个新的entry
Entry(int h, K k, V v, Entry<K,V> n) {
value = v;
next = n;
key = k;
hash = h;
}
6.resize()
// 重新调整HashMap的大小,newCapacity是调整后的新容量
void resize(int newCapacity) {
Entry[] oldTable = table;
int oldCapacity = oldTable.length;
if (oldCapacity == MAXIMUM_CAPACITY) {
//当旧容量已达上限,阈值则也取上限,因为不可能再扩容了
//所以此时也管不了性能问题了,能扩多大扩多大
threshold = Integer.MAX_VALUE;
return;
}
//新建一个HashMap,将“旧HashMap”的全部元素添加到“新HashMap”中,
//然后,将“新HashMap”赋值给“旧HashMap”。
Entry[] newTable = new Entry[newCapacity];
transfer(newTable, initHashSeedAsNeeded(newCapacity));
table = newTable;
threshold = (int)Math.min(newCapacity * loadFactor, MAXIMUM_CAPACITY + 1);
}
7.transfer()
// 将HashMap中的全部元素都添加到newTable中
void transfer(Entry[] newTable, boolean rehash) {
int newCapacity = newTable.length;
for (Entry<K,V> e : table) {
while(null != e) {
Entry<K,V> next = e.next;
//重新计算元素在新数组中的索引位置
if (rehash) {
e.hash = null == e.key ? 0 : hash(e.key);
}
int i = indexFor(e.hash, newCapacity);
//扩容后的新数组的桶中链表元素顺序颠倒
e.next = newTable[i];
newTable[i] = e;
e = next;
}
}
}
8.inflateTable()
//初始化底层数组
private void inflateTable(int toSize) {
// Find a power of 2 >= toSize
int capacity = roundUpToPowerOf2(toSize);
//获取阈值
threshold = (int) Math.min(capacity * loadFactor, MAXIMUM_CAPACITY + 1);
table = new Entry[capacity];
initHashSeedAsNeeded(capacity);//初始化hashSeed变量
}
//获取不小于初始容量的最小的2的指数倍数的数作为数组的大小
private static int roundUpToPowerOf2(int number) {
return number >= MAXIMUM_CAPACITY
? MAXIMUM_CAPACITY
: (number > 1) ? Integer.highestOneBit((number - 1) << 1) : 1;
}
9.hash()/indexFor()
//获取key的哈希值
final int hash(Object k) {
//通过更新hashSeed来修改hash值达到分散的目的
int h = hashSeed;//默认为0
if (0 != h && k instanceof String) {
return sun.misc.Hashing.stringHash32((String) k);
}
//异或运算保证不会影响返回的hashCode值(异1同0)
h ^= k.hashCode();
h ^= (h >>> 20) ^ (h >>> 12);
return h ^ (h >>> 7) ^ (h >>> 4);
}
//通过hash值和数组长度返回数组下标
//length-1是因为数组长度都是2的n次幂,只要再减去1,转换成二进制最高位肯定为0,其他位全为1
//此时进行位与运算就不会对hashcode值产生任何影响,会完整的得到原hashcode值的低位值,也有效降低了发生哈希冲突的概率
static int indexFor(int h, int length) {
return h & (length-1);
}
10.remove()
public V remove(Object key) {
Entry<K,V> e = removeEntryForKey(key);
return (e == null ? null : e.value);
}
final Entry<K,V> removeEntryForKey(Object key) {
if (size == 0) {
return null;
}
//计算hash值
int hash = (key == null) ? 0 : hash(key);
//得到桶索引
int i = indexFor(hash, table.length);
//记录待删除节点的前一个节点
Entry<K,V> prev = table[i];
//待删除节点
Entry<K,V> e = prev;
//遍历
while (e != null) {
Entry<K,V> next = e.next;
Object k;
//如果匹配,则删除节点
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k)))) {
modCount++;
size--;
if (prev == e)
table[i] = next;
else
prev.next = next;
e.recordRemoval(this);
return e;
}
prev = e;
e = next;
}
return e;
}