- 博客(7)
- 收藏
- 关注
原创 系统学习朴素贝叶斯-三种模型
概率论相关数学公式 条件概率: 相互独立事件: 贝叶斯定理:朴素贝叶斯分类器 众所周知,朴素贝叶斯是一种简单但是非常强大的线性分类器。它在垃圾邮件分类,疾病诊断中都取得了很大的成功。它只所以称为朴素,是因为它假设特征之间是相互独立的,但是在现实生活中,这种假设基本上是不成立的。那么即使是在假设不成立的条件下,它依然表现的很好,尤其是在小规模样本的情况下。但是,如果每个特征之间有很强的关...
2018-03-11 22:54:41 8957
原创 反向传播算法如何工作
简介 在上一章,我们看到了使用梯度下降算法来学习他们自身的权重和偏置。但是我们并没有讨论如何计算代价函数的梯度。本章我们来解释一下计算这些梯度的快速算法,也就是反向传播 (backpropagation)。 反向传播的核心是一个对代价函数C关于任何权重w(或者偏置b)的偏导数∂C/∂w的表达式。这个表达式告诉我们在改变权重和偏置时,代价函数变化的快慢。尽管表达式会有点复杂,不过⾥⾯也包含⼀...
2018-03-07 20:10:37 1481 4
原创 神经网络基础知识--感知器,S型神经元,梯度下降法,神经网络架构
感知器和S型神经元简介 1.1感知器 感知器是如何⼯作的呢?⼀个感知器接受⼏个⼆进制输⼊,x1, x2, …,并产⽣⼀个⼆进制输出: ⽰例中的感知器有三个输⼊,x1, x2, x3。通常可以有更多或更少输⼊。Rosenblatt 提议⼀个简单的规则来计算输出。他引⼊权重,w1, w2, …,表⽰相应输⼊对于输出重要性的实数。神经元的输出,0 或者 1,则由分配权重后的总和 ∑j wjx...
2018-02-26 23:03:30 4109
原创 TensorFlow入门教程
神经网络相关操作 1.1 tf.nn.conv2(input,filter,strides,padding,use_cudnn_gpu=None,name=None)input:指需要做卷积的输入图像,它要求是一个Tensor,具有[batch,in_height,in_width,in_channels]这样的shape,具体含义是[训练时一个batch的图片数量,图片高度, 图片...
2018-02-25 19:49:53 377
原创 如何成为一个优秀的数据科学家的投石之路
故事背景 这是kaggle的Titanic入门例子教程,我前面也写过一篇,这次工作是进一步清晰和完善整个步骤。大多数初学者都迷失在数据科学分析这个领域,因为他们陷入了黑盒子方法,使用他们不了解的库和算法。 本教程通过提供一个框架,教会您如何像数据科学家一样思考和思考/编码,从而使您在同行中获得1-2年的领先优势。 你不仅能够提交你的第一场比赛,而且你将能够解决任何问题。 我提供了清晰的解释,干...
2018-02-14 14:46:54 604
原创 Kanggle入门程序-预测Titanic生存率
如何预测Titanic生存率的流程简介 这是kaggle上入门推荐的测试例子,我将经历在著名的泰坦尼克号数据集上创建一个机器学习模型的全过程,这个模型已经被全世界的许多初学者所使用。 它提供关于泰坦尼克号旅客命运的信息,根据经济状况(等级),性别,年龄和生存情况进行总结。 在这个挑战中,我们被要求预测泰坦尼克号上的乘客是否会幸存下来。 接下来我将介绍自己在学习这个完整的数据处理、模型
2018-02-06 15:21:05 1438
原创 Windows10+python3.5+tensorflow-gpu1.0.0的安装流程
1.简介 本文主要介绍在Windows10-64位,python3.5下,安装TensorFlow-GPU-1.0.0版本的步骤。我遇到的主要的坑主要是TensorFlow-GPU-1.5.0与CUDA8.0版本不一致的问题。 步骤: 1)下载CUDA8.0,并安装成功,可能需要你更新显卡驱动 2)下载cuDNNv5.1 for CUDA 8.0,将压缩包内相应文件夹下
2018-02-04 21:20:36 2887 2
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人