【运筹学】

运筹学主要解决最优化问题,通过数学建模和约束条件分析来寻找函数的最大值和最小值。在面对强约束时,使用拉格拉日乘数法;弱约束条件下,则应用KKT定理。高等数学基础中,多元函数的最值问题涉及到黑塞矩阵。博客深入探讨了这些概念及其在实际问题中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

【运筹学】

第1讲 导学与绪论

线性代数就是通过一系列的手段“折腾”方程组,提取系统信息。

总结:《运筹学》要解决的是一般视觉下的最优化问题,就是寻找一般函数的最大值和最小值问题;怎么操作?

①抽象实际问题,数学建模;

②求解这个数学模型; 然后怎么解呢?

③首先研究这个函数,看它的约束条件是强约束条件还是弱约束条件;

④如果受到的是强约束条件,我们可以用拉格拉日乘数法;如果是弱约束条件,我们可以用KKT定理;我们还要注意我们所求解的实际问题的自然定义域和真实定义域

---------------------------------------------------------------------------------------------------------------------------------------------------------

第2讲 高等数学基础

一、最值与极值

-----------------------------------------------------------------------------------------------------------------------------------------------------------------------

多元函数真正极值问题:

黑塞矩阵(Hessian Matrix):

---------------------------------------------------------------------------------------------------------------------------------------------------------------------

 

 

 

 

-------------------------------------------------------------------------------------------------------------------------------------------------------------------------

 

 

 

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

yangbocsu

你的鼓励将是我创作的最大动力!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值