李宏毅机器学习之Backpropagation

一、背景

1.1 梯度下降

  • 先给\theta(weight and bias)
  • 先选择一个初始的\theta ^0,计算\theta ^0的损失函数(Loss Function)设一个参数的偏微分
  • 计算完这个向量(vector)偏微分,然后就可以去更新\theta
  • 百万级别的参数(millions of parameters)
  • 反向传播(Backpropagation)是一个比较有效率的算法,可以是我们在计算梯度向量的时候更有效率。

1.2 链式法则

  • 连锁影响(可以看出x影响y,y会影响z)
  • BP主要用到了chain rule

二、反向传播

  • 损失函数(Loss Function)是定义在单个训练样本上的,也就是就算一个样本的误差,比如我们想要分类,就是预测的类别和实际类别的区别,是一个样本的,用L表示。
  • 代价函数(Cost Function)是定义在整个训练集上面的,也就是所有样本的误差的总和的平均,也就是损失函数的总和的平均,有没有这个平均其实并不会影响后面的参数的求解结果。
  • 总体损失函数(Total loss function)是定义在整个训练集上面的,也就是所有样本的误差的总和。也就是平时我们反向传播需要最小化的值。

  • 对于L(\theta)就是所有l^n的损失之和,所以如果要算每个L(\theta)的偏微分,我们只要算每个l^n的偏微分,再把所有l^n偏微分的结果加起来就是L(\theta)的偏微分,所以等下我们值计算每个l^n的偏微分。首先在整个神经网络中抽取出一小部分的神经(Neuron)去看(红色标注的地方):

2.1 取出一个Neuron进行分析

  • 计算梯度分成两个部分
    • 计算\frac{\partial z}{\partial w}(Forward pass部分)
    • 计算\frac{\partial l}{\partial z}(Backward pass部分)

2.1.1 Forward Pass

  • 首先计算\frac{\partial z}{\partial w}(Forward pass的部分)

  • 更具求微分的原理,forward pass的运算规律就是:\frac{\partial z}{\partial w_1} = X_1\frac{\partial z}{\partial w_2}=X_2这里计算得到的x_1x_2恰好就是输入的x_1x_2直接使用数字,更直观地看到运算规律:

2.1.2 Backward Pass

  • 这一部分很困难复杂因为我们的l是最后一层:那么计算\frac{\partial l}{\partial z}就很困难

  • 计算所有激活函数的偏微分,激活函数有很多,这里使用Sigmoid函数为例,这里使用链式法则,计算过程如下:

  • 最终的式子结果:

  • 但是我们可以想象另一个角度来看这个事情,现在有另外一个神经元,把forward的过程逆向过来,其中{\sigma }'(z)是常数,因为它在向前传播的时候就已经确定了

  • case 1:Output layer
  • 假设\frac{\partial l}{\partial {z}'}\frac{\partial l}{\partial {z}''}是最后一层的隐藏层,也就是y1于y2是输出值,那么直接计算就能得出结果。如果不是最后一层,计算\frac{\partial l}{\partial {z}'}\frac{\partial l}{\partial {z}''}的话就需要继续往后走一直通过链式法则算下去

  • case 2:Not Output Layer
  • 对于这个问题我们继续计算后面绿色的\frac{\partial l}{\partial z_a}\frac{\partial l}{\partial z_b},然后通过继续乘w_5w_6得到\frac{\partial l}{\partial {z}'},但是要是\frac{\partial l}{\partial z_a}\frac{\partial l}{\partial z_b}都不知道,那么我们就继续往后面计算,一直碰到输出值,得到输出值后再反向往输入的那个方向走。

  • 对于下图1我们可以,从最后一个\frac{\partial l}{\partial z_5}\frac{\partial l}{\partial z_6}看,因为\frac{\partial l}{\partial z_a}\frac{\partial l}{\partial z_b}比较容易通过output求出来,然后继续往前求\frac{\partial l}{\partial z_3}\frac{\partial l}{\partial z_4},再继续求\frac{\partial l}{\partial z_1}\frac{\partial l}{\partial z_2}最后我们就得到下图2的结果

  • 实际上进行backward pass时候和向前传播的计算量差不多

三、总结

  • 我们目标是求计算\frac{\partial z}{\partial w}(Forward pass的部分)和计算\frac{\partial l}{\partial z}(Backward pass的部分),然后把\frac{\partial z}{\partial w}\frac{\partial l}{\partial z}相乘,我们就可以得到\frac{\partial l}{\partial w},所以我们就可以得到神经网络中所有的参数,然后用梯度下降就可以不断更新,得到损失最小的函数。

 

 

 

 

 

 

 

 

 

 

 

 

 

  • 1
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值