李宏毅深度学习笔记(二)——后向传播(Backpropagation)

本文详细介绍了反向传播(Backpropagation)算法在神经网络中的作用,它用于有效地计算梯度下降中的参数梯度。通过实例解释了损失函数、链式法则以及sigmoid函数在计算过程中的应用,展示了从输出层到输入层的梯度计算递推式。最终,文章阐述了整个前向传播和反向传播的运算流程,帮助读者理解神经网络学习的核心步骤。
摘要由CSDN通过智能技术生成

Backpropagation解决的是在神经网络中如何有效率的进行Gradient Descent算法的问题。更具体地说,假设将Loss Function记为\L(\theta),其中\theta为一个向量,表示所有的参数,那么L(\theta)的梯度表示为

\nabla L(\theta)=\begin{bmatrix} \frac{\partial L(\theta)}{\partial w_{1}}\\ \frac{\partial L(\theta)}{\partial w_{2}}\\ ...\\ \frac{\partial L(\theta)}{\partial b_{1}}\\ \frac{\partial L(\theta)}{\partial b_{2}}\\ ...\\ \end{bmatrix}

Backpropagation就是快速计算\nabla L的一种方法。

定义函数C^{n}(\theta)为第n个预测值与真实值之间的距离函数,则Loss Function可以表示为

L(\theta)=\sum_{n=1}^{N}C^{n}(\theta)

\theta中的某一个参数记为w,C^{n}简记为C,下面开始展示\frac{\partial C}{\partial w}的计算过程。

如图所示是一个神经元,输入为x_{1}x_{2},令sigmoid函数的输入z=w_{1}x_{1}+w_{2}x_{2}+b,则根据链式法则,\frac{\partial C}{\partial w}=\frac{\partial C}{\partial z}\frac{\partial z}{\partial w}.

 其中\frac{\partial z}{\partial w}是容易得到的。若w=w_{1},则\frac{\partial z}{\partial w}=x_{1};若w=w_{2},则\frac{\partial z}{\partial w}=x_{2};否则\frac{\partial z}{\partial w}=0。但是,计算\frac{\partial C}{\partial z}需要考虑后面的运算对C带来的影响。

进一步地,令a=\sigma(z),我们可以得到\frac{\partial C}{\partial z}=\frac{\partial C}{\partial a}\frac{\partial a}{\partial z}  。同样的,\frac{\partial a}{\partial z}可以由sigmoid函数求导得到,计算\frac{\partial C}{\partial a}需要考虑后面的运算对C带来的影响。

于是我们考虑下一层神经元。假设这个神经元只与下一层的两个神经元的连接。在下一层中,经过同样的运算可以得到{z}'{z}''。于是\frac{\partial C}{\partial a}=\frac{\partial C}{\partial {z}'}\frac{\partial {z}'}{\partial a}+\frac{\partial C}{\partial {z}''}\frac{\partial {z}''}{\partial a}

 观察这个式子,从图中易得\frac{\partial {z}'}{\partial a}=w_{3}\frac{\partial {z}''}{\partial a}=w_{4},而\frac{\partial C}{\partial {z}'}\frac{\partial C}{\partial {z}''}的求法与\frac{\partial C}{\partial z}没有任何区别。于是我们考虑:能不能用递推的方法求出所有的\frac{\partial C}{\partial z}呢?

答案是肯定的。通过以上的推导可以得到递推式

\frac{\partial C}{\partial z}={\sigma}'(z)[w_{3}\frac{\partial C}{\partial {z}'}+w_{4}\frac{\partial C}{\partial {z}''}]

 如果这层神经元不是最后一层,即不是output layer,则用递推式计算;如果是output layer,假设输出分别为y_{1}y_{2},则\frac{\partial C}{\partial {z}'}=\frac{\partial C}{\partial y_{1}}\frac{\partial y_{1}}{\partial {z}'}=\frac{\partial C}{\partial y_{1}}{\sigma}'({z}')\frac{\partial C}{\partial {z}''}=\frac{\partial C}{\partial y_{2}}\frac{\partial y_{2}}{\partial {z}''}=\frac{\partial C}{\partial y_{2}}{\sigma}'({z}'')

 由于C是距离函数,表达式已知且显含y,所以\frac{\partial C}{\partial y}易于求得。

与此同时,我们观察到,递推式的项数与该神经元连接到的神经元的个数相同,并且同样乘以一个系数之后相加,这个过程与神经网络做的事情很像。于是我们用一个反向的神经元来表示这个计算过程。但是激活函数由sigmoid函数换为乘一个常数{\sigma}'(z),并且没有bias项。

由于这个过程与正常的神经网络进行运算的方向是相反的,所以这个过程又叫做Backward pass。

总结

整理一遍整个运算过程,假设下图为我们要计算的神经网络。

 首先,对整个神经网络进行一次运算,计算出z1,z2…以及y1和y2。

然后进行backward pass,计算\frac{\partial C}{\partial z_{1}}\frac{\partial C}{\partial z_{2}}…一次性计算出所有需要用到的偏微分值。

 最后依次对所有参数进行运算即可。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值