第一章:数据载入及初步观察
1.1 载入数据
数据集下载
https://www.kaggle.com/c/titanic/overview
1.1.1 导入numpy和pandas
import numpy as np
import pandas as pd
1.1.2 载入数据
(1) 使用相对路径载入数据
Train_data=pd.read_csv('train.csv')
Train_data.head(5) # 显然读入数据的前5行
(2使用绝对路径载入数据
Train_data=pd.read_csv('E:/jupyter notebook workstation/DataWhale DA/hands-on-data-analysis-master/第一单元项目集合/train.csv')
#这里要注意的是复制文件路径的时候,\要换成/
Train_data.head(5)
【提示】相对路径载入报错时,尝试使用os.getcwd()查看当前工作目录。
思考pd.read_csv()和pd.read_table()的不同
先给个结论:read_csv(),默认的切割符是‘,’ 而read_table()则是’\t’切割数据
具体的来看这个例子
pd.read_csv('train.csv').head(3)
pd.read_table('train.csv').head(3) #pd.read_table,默认以'\t'切割数据,这样的话就没法切割以逗号为分割的列名
看出来差别了吧,因为列名的表头全是逗号分隔,所以用read_table()读取数据,没有办法进行分割
现在想read_table()和read_csv()效果一样怎么操作?
# 要pd.read_csv()和pd.read_table()的效果相同,只需要把sep参数更改
pd.read_table('train.csv',sep=',').head(3)
1.1.3 每1000行为一个数据模块,逐块读取
pd.read_csv('train.csv',chunksize=1000)
为什么要逐块读取呢?
使用pandas来处理文件的时候,经常会遇到大文件,而有时候我们只想要读取其中的一部分数据或对文件进行逐块处理
1.1.4 将表头改成中文,索引改为乘客ID [对于某些英文资料,我们可以通过翻译来更直观的熟悉我们的数据]
PassengerId => 乘客ID
Survived => 是否幸存
Pclass => 乘客等级(1/2/3等舱位)
Name => 乘客姓名
Sex => 性别
Age => 年龄
SibSp => 堂兄弟/妹个数
Parch => 父母与小孩个数
Ticket => 船票信息
Fare => 票价
Cabin => 客舱
Embarked => 登船港口
Train_data = pd.read_csv('train.csv', names=['乘客ID','是否幸存','仓位等级','姓名','性别','年龄','兄弟姐妹个数','父母子女个数','船票信息','票价','客舱','登船港口'],index_col='乘客ID',header=0)
Train_data.head()
# 使用names可重命名表名称
1.2 初步观察
观察数据大小、有多少列,各列都是什么格式的,是否包含null等
1.2.1 查看数据的基本信息
(1)info()
Train_data.info() #可查看列名,和列名的数据,以及数据类型