题目描述:在数组中的两个数字,如果前面一个数字大于后面的数字,则这两个数字组成一个逆序对。输入一个数组,求出这个数组中的逆序对的总数P。并将P对1000000007取模的结果输出。 即输出P%1000000007
题目保证输入的数组中没有的相同的数字
数据范围:
对于%50的数据,size<=10^4
对于%75的数据,size<=10^5
对于%100的数据,size<=2*10^5
示例1:
输入: 1,2,3,4,5,6,7,0
输出: 7
【分析】
归并排序——分而治之
分治思想,采用归并排序的思路来处理,如下图,先分后治:
先把数组分解成两个长度为2的子数组,再把这两个子数组分解成两个长度为1的子数组。接下来一边合并相邻的子数组,一边统计逆序对的数目。在第一对长度为1的子数组{7}、{5}中7>5,因此(7,5)组成一个逆序对。同样在第二对长度为1的子数组{6},{4}中也有逆序对(6,4),由于已经统计了这两对子数组内部的逆序对,因此需要把这两对子数组进行排序,避免在之后的统计过程中重复统计。
确保 辅助数组(记为copy) 中的数字是递增排序的
逆序对的总数 = 左边数组中的逆序对的数量 + 右边数组中逆序对的数量 + 左右结合成新的顺序数组中出现的逆序对的数量
总结一下:
这是一个归并排序的合并过程,主要是考虑合并两个有序序列时,计算逆序对数。
对于两个升序序列,设置两个下标:两个有序序列的末尾。每次比较两个末尾值,如果前末尾大于后末尾值,则有”后序列当前长度“个逆序对;否则不构成逆序对。然后把较大值拷贝到辅助数组的末尾,即最终要将两个有序序列合并到辅助数组并有序。
这样,每次在合并前,先递归地处理左半段、右半段,则左、右半段有序,且左右半段的逆序对数可得到,再计算左右半段合并时逆序对的个数。
class Solution {
public:
int InversePairs(vector<int> data) {
if(data.size()==0)
return 0;
vector<int> copy;//排序的辅助数组
for(int i=0;i<data.size();i++){
copy.push_back(data[i]);//复制data到vec中
}
return Number(data,copy,0,data.size()-1)%1000000007;
}
long Number(vector<int>&data,vector<int>©,int begin,int end)//自定义统计逆序数函数
{
if(begin==end)//如果指向相同位置,则没有逆序
return 0;
int mid=(begin+end)/2;//求中点,分而治之
long leftCount = Number(copy,data,begin,mid);/*使data左半段有序,并返回左半段逆序对的数目*/
long rightCount = Number(copy,data,mid+1,end);/*使data右半段有序,并返回右半段逆序对的数目*/
int i=mid;//i初始化为前半段最后一个数字的下标
int j=end;//j初始化为后半段最后一个数字的下标
int indexcopy=end;//辅助数组复制的数组的最后一个数字的下标
long count=0;//计数,逆序对的个数,注意类型
while(i>=begin&&j>=mid+1)//i、j分别在前后段向前移动,但不能越界,while就是合的过程
{
if(data[i]>data[j])//分以后再合,前面元素大于后面,即构成逆序
{
copy[indexcopy--]=data[i--];//然后把较大数字复制到辅助排序数组
count=count+j-mid;//统计逆序数等于后半部分元素数
}
else
{
copy[indexcopy--]=data[j--];//正常顺序,直接复制到排序数组
}
}
for(;i >= begin; i--)//为下一轮比较准备
{
copy[indexcopy--] = data[i];
}
for(;j >= mid + 1; j--)
{
copy[indexcopy--] = data[j];
}
return leftCount + rightCount + count;
}
};