- 博客(11)
- 资源 (1)
- 收藏
- 关注
原创 js 改写对象转字符串 字符串转对象(不丢失对象方法)
js 改写对象(包括方法)转字符串对象转字符串字符串转对象总结js中将对象转化为字符串可以用JSON.stringify,字符串转对象可以用JSON.parse。这两个方法在大部分的情况下都很好用,但是这两个方法在进行字符串转换的时候,会丢失对象中的方法。我们有时候会想要保留对象中的方法,这就需要进行一些额外的操作。对象转字符串对象转字符串要保留函数的思路是将对象中的函数转化为字符串,然后再调用JSON.stringify将更改过的对象转化为字符串。方法如下:// 返回一个将对象中的函数都转化为字符
2020-08-11 19:40:46 4101 1
原创 解决无法安装node-sass的问题
出现了win32-x64-64_binding.node 无法下载的问题,报 Cannot download “https://github.com/sass/node-sass/releases/download/v4.11.0/win32-x64-64_binding.node”的错误。主要问题是:主要是windows平台缺少编译环境。打开“C:\Windows\System32" 以管...
2019-12-05 00:20:50 385
原创 损失函数
神经网络的效果以及优化目标,都是通过损失函数来定义的。交叉熵交叉熵刻画了两个概率分布之间的距离,是分类问题中使用比较广泛的一种损失函数。给定两个概率分布p和q,通过p和q表示的交叉熵为:H(p,q)=−∑xp(x)∗logq(x)H(p,q)=-∑_xp(x)*logq(x)H(p,q)=−x∑p(x)∗logq(x)交叉熵的函数并不是对称的,即H(p,q) != H(q, p)...
2019-10-23 15:00:05 281
原创 JavaScript中创建对象的方式
在JS中可以很方便地使用Object构造函数或者对象字面量的形式来创建对象。但是使用同一个接口来创建对象,会产生大量重复的代码,为此,根据需求的不同,延伸出了许多创建对象的方法。
2019-10-22 23:21:06 155
原创 JS对象中的属性类型、属性定义和属性读取
理解对象ES5中的对象是指无序的属性的集合。(属性可以是基本值、对象和函数)。属性类型对象的属性类型有两种,一种是数据属性,是数据值的保存位置;另一种是访问器属性,包含getter和setter函数。数据属性数据属性包含一个数据值的位置,在这个位置可以读取和写入值。数据属性有四个描述其特征的特性。(这些特性是为javascript内部引擎服务的,不能直接访问,所以将它们放在方括号中。)...
2019-10-21 23:46:41 3074
原创 Tensorflow实现训练神经网络解决二分类问题
实现一个前向传播算法Tensorflow的变量声明函数为**tf.Variable()**, 其作用为保存和更新神经网络中的参数。TensorFlow中的变量需要指定初始值,初始值可以设置成随机数、常数或者是通过其他变量的计算得到。一般使用随机数给TensorFlow中的变量初始化。""" function: 实现一个前向传播算法 source:Tensorflow实战深...
2019-05-11 19:53:34 3905 1
原创 仿照LFW的pair.txt生成自己数据集的txt文件
最近在跑facenet的valida_on_lfw.py的样例,想要在自己的数据集上运行该代码。关于pair.txt的描述,见http://vis-www.cs.umass.edu/lfw/README.txt编写代码生成自己的pair.txt文件:import globimport os.pathimport randomimport numpy as npimport osim...
2019-03-21 11:55:18 4724 22
原创 facenet人脸识别
主要参考博客:https://www.cnblogs.com/gmhappy/p/9472388.html准备工作源码下载:https://github.com/davidsandberg/facenet.git数据集下载:http://vis-www.cs.umass.edu/lfw/lfw.tgz模型下载:https://drive.google.com/file/d/1R77HmFA...
2019-03-15 20:27:37 579 3
原创 TensorFlow实现二分类神经网络的训练
网络的结构这是一个全连接的神经网络。(相邻两层之间任意两个节点都有连接)前向传播算法示意图:将输入x1、x2组织成一个12的矩阵x=[x1, x2], 而W1组织成一个23的矩阵:通过矩阵乘法就可以得到隐藏层三个节点的向量取值:类似输出层可以表示为矩阵的形式:所以就可以得到前向传播过程的TensorFlow实现。a = tf.matmul(x, w1) # tf.matmu...
2019-03-03 15:37:15 2220
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人