主要参考博客:https://www.cnblogs.com/gmhappy/p/9472388.html
准备工作
源码下载:https://github.com/davidsandberg/facenet.git
数据集下载:http://vis-www.cs.umass.edu/lfw/lfw.tgz
模型下载:https://drive.google.com/file/d/1R77HmFADxe87GmoLwzfgMu_HY0IhcyBz/view
使用的环境: win10 Python3.6(Anaconda)
首先在anaconda中新建一个python3.6的环境,安装TensorFlow和sklearn库。
在自己环境对应的\Lib\site-packages目录下,新建facenet文件夹,并将下载的源码src文件夹中的所有文件复制到该目录下。本人的目录如下:

并且将该路径配置到环境变量中,结果如图:

本文详细介绍了如何使用Facenet进行人脸识别,包括环境配置、数据集预处理、模型评估等步骤。首先,创建Python3.6环境并安装所需库,然后将源码、数据集和模型导入,并配置环境变量。接着,执行预处理数据的Python脚本,处理过程中可能需要安装额外模块。最后,利用训练好的模型进行预测,虽然可能出现警告,但预处理和预测过程顺利完成。
最低0.47元/天 解锁文章
3606

被折叠的 条评论
为什么被折叠?



