You are a professional robber planning to rob houses along a street. Each house has a certain amount of money stashed, the only constraint stopping you from robbing each of them is that adjacent houses have security system connected and it will automatically contact the police if two adjacent houses were broken into on the same night.
Given a list of non-negative integers representing the amount of money of each house, determine the maximum amount of money you can rob tonight without alerting the police.
Example 1:
Input: nums = [1,2,3,1]
Output: 4
Explanation: Rob house 1 (money = 1) and then rob house 3 (money = 3).
Total amount you can rob = 1 + 3 = 4.
Example 2:
Input: nums = [2,7,9,3,1]
Output: 12
Explanation: Rob house 1 (money = 2), rob house 3 (money = 9) and rob house 5 (money = 1).
Total amount you can rob = 2 + 9 + 1 = 12.
method dp
思路非常直白,跟爬楼梯类似,当抢劫第i家房屋的时候,考虑抢还是不抢,所以动态方程为dp[i] = max(dp[i-1], dp[i-2] + nums[i])
int rob(vector<int>& nums) {
int maxMoney = 0;
if(nums.size() == 0) return 0;
if(nums.size() == 1) return nums[0];
vector<int> dp(nums.size());
dp[0] = nums[0];
dp[1] = max(nums[1], dp[0]);
for(int i = 2; i < nums.size(); i++){
dp[i] = max(dp[i-1], dp[i-2] + nums[i]);
}
for(int i = 0; i < dp.size(); i++)
maxMoney = max(maxMoney, dp[i]);
return maxMoney;
}
summary
- 当前状态与多个前状态相关,并且不同前状态的约束不同