描述
给定一个整数数组,找出两个 不重叠 子数组使得它们的和最大。
每个子数组的数字在数组中的位置应该是连续的。
返回最大的和。
样例
给出数组 [1, 3, -1, 2, -1, 2]
这两个子数组分别为 [1, 3]
和 [2, -1, 2]
或者 [1, 3, -1, 2]
和 [2]
,它们的最大和都是 7
挑战
要求时间复杂度为 O(n)
dalao思路:left数组表示0-i这个区间内和最大的子数组,right数组表示i-nums.size()-1这个区间内和最大的子数组
public int maxTwoSubArrays(List<Integer> nums) {
if(nums == null || nums.size() == 0) {
return 0;
}
int maxSum = nums.get(0),curSum = 0;
int []left = new int[nums.size()];
int []right = new int[nums.size()];
for (int i = 0;i < nums.size();i++) {
curSum += nums.get(i);
maxSum = Math.max(maxSum,curSum);
curSum = Math.max(curSum,0);
left[i] = maxSum;
}
curSum = 0;
maxSum = nums.get(nums.size()-1);
for (int i = nums.size()-1;i > 0;i--) {
curSum += nums.get(i);
maxSum = Math.max(maxSum,curSum);
curSum = Math.max(curSum,0);
right[i] = maxSum;
}
maxSum = Integer.MIN_VALUE;
for (int i = 0;i < nums.size()-1;i++) {
maxSum = Math.max(maxSum,left[i] + right[i+1]);
}
return maxSum;
}
//前后遍历、枚举法 summary: 1、前后遍历的思想/interval 类型题也可以参考,因为两个子数组不能重合,先正向遍历得到0-i位置内最大子数组,maxSum = Math.max(maxSum,curSum);保证了left[i]会是这区间的最大值。也有一点动态规划dp的思路 2、因为interval不能重合,所以正反遍历,并且有一个变量表示符合一个区间符合条件的值