mapreduce-找出共同好友

这篇博客通过MapReduce解决寻找共同好友的问题。首先,通过Map阶段处理原始数据,输出键值对;然后,在Reduce阶段进行合并,找出共同好友。经过两步处理,最终得到每个用户之间的共同好友列表。
摘要由CSDN通过智能技术生成

1、原始数据

A:B,C,D,E,O
B:A,C,E,K
C:F,A,D,I
D:A,E,F,L
E:B,C,D,M,L
F:A,B,C,D,E,O,M
G:A,C,D,E,F
H:A,C,D,E,O
I:A,O
J:B,O
K:A,C,D
L:D,E,F
M:E,F,G
O:A,H,I,J

2、解题思路: 


第一步:
map
读一行    A:B,C,D,E,O
输出    <B,A><C,A><D,A><E,A><O,A>
再读一行    B:A,C,E,K
输出        <A,B><C,B><E,B><K,B>

reduce操作:
拿到的数据比如说:<C,A><C,B><C,E><C,F><C,G>.......
输出
<A-B,C><A-E,C><A-F,C><A-G,C><B-E,C><B-F,C>.......

第二步:
map:
读入一行:    <A-B,C>
直接输出:    <A-B,C>

reduce操作:
读入数据:<A-B,C><A-B,D><A-B,F>......
输出:A-B C,F,G

3、代码实现(分两步)

第一步:

package cn.itacst.mr.ShareParents;

import java.io.IOException;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

public class ShareParentsSte
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值