深度学习
文章平均质量分 84
MIngo的成长
这个作者很懒,什么都没留下…
展开
-
image caption 必看论文,模型整理
image caption 多模态原创 2023-11-30 09:43:31 · 1555 阅读 · 0 评论 -
ChatGPT和代码智能
ChatGPT 深入浅出,前世今生原创 2022-12-06 16:23:20 · 8366 阅读 · 0 评论 -
视觉文档问答/文档关键信息提取
NLP相关知识命名实体识别(NER)序列标注(Sequence Tagging)是NLP中最基础的任务,应用十分广泛,如分词、词性标注(POS tagging)、命名实体识别(Named Entity Recognition,NER)、关键词抽取、语义角色标注(Semantic Role Labeling)、槽位抽取(Slot Filling)等实质上都属于序列标注的范畴。命名实体识别(Named Entity Recognition,简称NER),又称作“专名识别”,是指识别文本中具有特定意义原创 2022-05-18 14:11:51 · 897 阅读 · 0 评论 -
如何优化算法提高卷积神经网络的泛化能力
卷积网络的优化方式方法说明使用更多数据在有条件的前提下,尽可能多地获取训练数据是最理想的方法,更多的数据可以让模型得到充分的学习,也更容易提高泛化能力使用更大批次在相同迭代次数和学习率的条件下,每批次采用更多的数据将有助于模型更好的学习到正确的模式,模型输出结果也会更加稳定调整数据分布大多数场景下的数据分布是不均匀的,模型过多地学习某类数据容易导致其输出结果偏向于该类型的数据,此时通过调整输入的数据分布可以一定程度提高泛化能力 Batch normalization原创 2021-08-27 14:18:44 · 1117 阅读 · 0 评论 -
深度学习CV面试
深度学习CV面试最近面试心得 还是需要持续更新 持续学习!!归一化归一化含义?归纳统一样本的统计分布性。归一化在 $ 0-1$ 之间是统计的概率分布,归一化在$ -1–+1$ 之间是统计的坐标分布。无论是为了建模还是为了计算,首先基本度量单位要同一,神经网络是以样本在事件中的统计分别几率来进行训练(概率计算)和预测,且 sigmoid 函数的取值是 0 到 1 之间的,网络最后一个节点的输出也是如此,所以经常要对样本的输出归一化处理。归一化是统一在 $ 0-1 $ 之间的统计概率分布原创 2021-08-27 13:46:56 · 415 阅读 · 0 评论 -
场景文字的两类检测算法综述---基于回归和分割的方法
系列文章目录文章目录系列文章目录前言一、pandas是什么?二、使用步骤1.引入库2.读入数据总结前言# 引言自然场景文本检测识别(Scene Text Recognition, STR)是计算机视觉中的一个重要领域。它在图像搜索,即时翻译和机器人导航等应用中有着至关重要的作用:例如识别照片和视频中的标志、路牌、商店名称等。相比于发展成熟的文档文本识别技术(OCR),STR显然更具挑战性。OCR善于识别平面上的白纸黑字,而自然场景中的文本具有复杂的光照、遮挡、角度、字体和3D阴影。一、pan原创 2021-01-21 13:37:41 · 4919 阅读 · 0 评论 -
PaddleOCR 识别数据制作
PaddleOCR 识别数据制作OCR 常见数据集准备生成PaddleOCR识别数据集Python常见转义符号ChineseOCR 数据集转PaddleOCR 数据集训练格式以PaddleOCR 为基础OCR 常见数据集准备OCR数据集整理通用中英文OCR数据集手写数据集垂类多语言生成PaddleOCR识别数据集根据描述,街景数据集根据真值图crop 下载数据集后打开标注,会发现有illegibility和difficult这个字段,根据这个字段的真值去crop图,point是相对应的坐标原创 2021-01-20 14:40:46 · 1851 阅读 · 0 评论 -
复习整理 Mask R-CNN
理解Mask R-CNN文章目录理解Mask R-CNN前言一、简介基础点名词解释简单复习前言为了综合复习 Mask R-CNN 写一个博客简言之:物体检测+产生一个切割mask(识别)和FasterR−CNN区别:能生成一个检测框一、简介基础点名词解释物体检测:Fast/Faster R−CNN通常包含两个问题,一是判断属于某个特定类的物体是否出现在图中;二是对该物体进行定位(常用表征就是物体的边界框)可实现输入测试图片,输出检测到的物体类别和位置。语义分割 Fully Conv原创 2020-08-31 14:47:35 · 315 阅读 · 0 评论 -
RNN、LSTM、GRU基础原理梳理
文章目录前言一、传统RNN双向RNN深层双向RNN二、LSTM第一层第二层第三层第四层三、GRU四、 LSTM和GRU区别参考前言为了复习NLP自己的相关知识,整理一个博客提示:以下是本篇文章正文内容,下面案例可供参考一、传统RNN示例:pandas 是基于NumPy 的一种工具,该工具是为了解决数据分析任务而创建的。传统的RNN也即BasicRNNcell单元。内部的运算过程为,(t-1)时刻的隐层输出与w矩阵相乘,与t时刻的输入乘以u之后的值进行相加,然后经过一个非线性变化(tan原创 2020-08-31 11:09:18 · 1939 阅读 · 0 评论