复习整理 Mask R-CNN

理解Mask R-CNN


前言

为了综合复习 Mask R-CNN 写一个博客
简言之:物体检测+产生一个切割mask(识别)
和FasterR−CNN区别:能生成一个检测框

一、简介

基础点

名词解释

物体检测:Fast/Faster R−CNN
通常包含两个问题,一是判断属于某个特定类的物体是否出现在图中;二是对该物体进行定位(常用表征就是物体的边界框)可实现输入测试图片,输出检测到的物体类别和位置。

语义分割 Fully Convolutional Network (FCN)
简单而言就是给定一张图片,对图片上的每一个像素点分类

实例分割
物体检测和语义分割的综合体。相对物体检测的边界框,实例分割可精确到物体的边缘;相对语义分割,实例分割可以标注出图上同一物体的不同个体

在这里插入图片描述

简单复习

Mask R-CNN沿用了Faster R-CNN的思想,特征提取采用ResNet-FPN的架构(多尺度,详见博客),其次,Mask R-CNN将Faster R-CNN的RoI Pooling改为了RoI Align,另外多加了一个Mask预测分支。综上,Mask R-CNN一共有以下三点改进:

  • 新加了一个mask分支;

  • 用ResNet-FPN做backbone,有利于多尺度物体的检测和分割;

  • RoI Pooling -> RoI Align;

  • 损失函数
    Lcls 和 Lbox 与faster rcnn的定义没有区别。需要具体说明的是Lmask

Faster R-cnn 损失函数
在这里插入图片描述

在这里插入图片描述

可见Mask RCNN综合了很多此前优秀的研究成果,并且其在工业界中也被广泛使用,效果很好。

注:要了解Mask R-CNN,需要以下知识:(后面给出了参考文章链接,在此不再赘述。)

  • Faster R-CNN
    (参考博客

  • ResNet-FPN
    (参考博客

  • ResNet-FPN + Faster R-CNN
    (参考博客

在熟悉以上基础之后,我们就会发现:Mask R-CNN == ResNet-FPN + Faster R-CNN + Mask。

推荐阅读大佬文章令人拍案称奇的Mask RCNN
给了一个全面的入门讲解。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值