【Java - J - 42】连续子数组的最大和

题目描述

输入一个整数数组,数组里有正数也有负数。数组中的一个或多个整数组成一个子数组。求所有子数组的和的最大值。要求时间复杂度为O(n)。
如,数组{1,-2,3,10,-4,7,2,-5},最大子数组{3,10,-4,7,2},和为18。
练习地址

实现

方法:动态规划
f ( i ) = p D a t a [ i ] , i = 0 或 者 f ( i − 1 ) ≤ 0 f(i) = pData[i], i=0或者f(i-1)≤0 f(i)=pData[i],i=0f(i1)0
f ( i ) = f ( i − 1 ) + p D a t a [ i ] , i ≠ 0 或 者 f ( i − 1 ) > 0 f(i) = f(i-1) +pData[i], i≠0或者f(i-1)>0 f(i)=f(i1)+pData[i],i=0f(i1)>0

public class C42_array_GreatestSubArray {
    public static int FindGreatestSumOfSubArray(int[] array) {
        int max=array[0];//包含array[i]的连续数组最大值 如,13-4,-4=9
        int res=array[0];//记录当前所有子数组的和的最大值 如,13-4,13=13
        for (int i = 1; i <array.length ; i++) {
            max=Math.max(max+array[i],array[i]); //
            res=Math.max(max,res);
        }
        return res;
    }
}
Test
public static void main(String[] args) {
        int[] array={1,-2,3,10,-4,7,2,-5};
        int res= FindGreatestSumOfSubArray(array);
        System.out.println(res);
    }
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值