题目描述
输入一个整数数组,数组里有正数也有负数。数组中的一个或多个整数组成一个子数组。求所有子数组的和的最大值。要求时间复杂度为O(n)。
如,数组{1,-2,3,10,-4,7,2,-5},最大子数组{3,10,-4,7,2},和为18。
练习地址
实现
方法:动态规划
f
(
i
)
=
p
D
a
t
a
[
i
]
,
i
=
0
或
者
f
(
i
−
1
)
≤
0
f(i) = pData[i], i=0或者f(i-1)≤0
f(i)=pData[i],i=0或者f(i−1)≤0
f
(
i
)
=
f
(
i
−
1
)
+
p
D
a
t
a
[
i
]
,
i
≠
0
或
者
f
(
i
−
1
)
>
0
f(i) = f(i-1) +pData[i], i≠0或者f(i-1)>0
f(i)=f(i−1)+pData[i],i=0或者f(i−1)>0
public class C42_array_GreatestSubArray {
public static int FindGreatestSumOfSubArray(int[] array) {
int max=array[0];//包含array[i]的连续数组最大值 如,13-4,-4=9
int res=array[0];//记录当前所有子数组的和的最大值 如,13-4,13=13
for (int i = 1; i <array.length ; i++) {
max=Math.max(max+array[i],array[i]); //
res=Math.max(max,res);
}
return res;
}
}
Test
public static void main(String[] args) {
int[] array={1,-2,3,10,-4,7,2,-5};
int res= FindGreatestSumOfSubArray(array);
System.out.println(res);
}