力扣(leetcode) 1838. 最高频元素的频数 (滑动窗口法)

题目在这:https://leetcode-cn.com/problems/frequency-of-the-most-frequent-element/

题目分析:

简单的说一下这个题目的意思,就是给你一个数组,比如[1,2,3]
再给你一个正数,比如 K = 3。
你可以将数组内的任意数字加1,操作3次,使数组内相同数字出现的次数最多。
比如上述例子,将 1 加两次 等于3 。2加一次等于3.此时 ‘加1’ 操作进行了3次, 小于等于题目中给的K。且数组中为【3,3,3】 ”3“ 出现了三次,是最多的。
最后返回出现次数最多的数字的出现次数。返回 ‘3’ 。

思路分析:

这道题的数量级都在 105 比较大,使用暴力必定会超时。

首先要知道,本题中的操作只能加,不能减。
比如 [2,4] 我们只能将2加到4 ,不能将4减到2.
所以,当K无限大时,要找数组里的某个数字最大频数,一定是将所有数字全部加到该数组的最大值。
比如 [1,4,7] 将1和4全都加到7,此时数字 7 的出现次数 3次,为最大。

所以我们使用排序+滑动窗口来解决本题。

设置两个指针分别指向窗口的头和尾。

当窗口内的数字全部加到最大所需操作数不大于K为符合条件。

1. 窗口内符合条件:右指针后移,扩大窗口。计算新进来的数字所需操作数,更新总的所使用的操作数。
2. 窗口内不符合条件:左指针后移,缩小窗口。计算吐出去的数字所需操作数。更新总的所使用的的操作数。

完整代码:

 def maxFrequency(self, nums: List[int], k: int) -> int:
 
        l = 0
        r = 1
        nums.sort()
        res =1 # 记录最大频数
        temp = 0 # 记录加一次数

        while r < len(nums):
            temp += (r - l) * (nums[r] - nums[r - 1]) # 更新当前操作数

            while temp > k:

                temp -= nums[r] - nums[l]
                l += 1
            res = max(res, r - l + 1)
            r += 1
        return res

解释一下代码里temp变量计算思想。

例如 nums = [1,3,5,7] K=5

开始时 左指针L 指向1,右指针R指向3。
将1 加到 3 所需操作数为2次。 小于5。 R指针后移

第二次while时。 数组为 [3,3,5,7] temp为2。
此时R指针指向5 L指针依旧指向第一个3.
计算此时的操作数temp,为上一次将1加到3所需操作数加上 本次将两个3都变成R所指的5所需的操作数。r-l 计算左右指针之间的数字,nums[r] - nums[r - 1] 计算 右指针和右指针前一位的差值。

要明白,每次循环时,除了右指针,其他窗口内的数字都是一样的,因为都在前面改变过了。

所以,当窗口内增加值了。temp = temp +(r - l) * (nums[r] - nums[r - 1])
当窗口内的值减少了。temp = temp - nums[r] - nums[l]

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

深度不学习!!

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值