Pytorch---- CIFAR10实战(训练集+测试集+验证集)完整版,逐行注释-----学习笔记

CIFAR10数据集准备、加载

解释一下里面的参数 root=数据放在哪。 train=是否为训练集 。 download=是否去网上下载。
里面的那个 transform 就是转换数据类型为Tensor类型。

准备一个测试集 一个训练集 自动从网上下载好。 大概160MB左右。图片大小是32*32的RGB格式。

train_data = torchvision.datasets.CIFAR10(root='../data', train=True, transform=torchvision.transforms.ToTensor(),
                                          download=True)
test_data = torchvision.datasets.CIFAR10(root='../data', train=False, transform=torchvision.transforms.ToTensor(),
                                         download=True)

然后我们加载数据集,使用DataLoader。
设置 mini-batch为64.
然后再看一下训练集和测试集的数据集个数。

# DataLoader加载数据集
train_dataloader = DataLoader(train_data, batch_size=64)
test_dataloader = DataLoader(test_data, batch_size=64)
print("训练集的长度:{}".format(len(train_data)))
print("测试集的长度:{}".format(len(test_data)))

搭建神经网络

使用网上给的图片搭建神经网络,下图。
使用Sequential组合的方法写每个网络。
在这里插入图片描述

# 搭建神经网络
class Model(nn.Module):
    def __init__(self):
        super(Model, self).__init__()
        self.model = nn.Sequential(
            nn.Conv2d(3, 32, 5, 1, 2),
            nn.MaxPool2d(2),
            nn.Conv2d(32, 32, 5, 1, 2),
            nn.MaxPool2d(2),
            nn.Conv2d(32, 64, 5, 1, 2),
            nn.MaxPool2d(2),
            nn.Flatten(),
            nn.Linear(64 * 4 * 4, 64),
            nn.Linear(64, 10),
        )

    def forward(self, x):
        x = self.model(x)
        return x

损失函数和优化器

使用交叉熵做为损失函数,并且放到GPU上一会做训练。

# 损失函数
loss = nn.CrossEntropyLoss().cuda()

# 优化器
optimizer  = torch.optim.SGD(model.parameters(),lr=0.01,)

训练集

这里的训练集开头有一个 model.train() 就是训练集循环开头写这个。也可以不写,不过规范要写上。

	model.train() # 也可以不写,规范的话是写,用来表明训练步骤
    for data in train_dataloader:
        # 数据分开 一个是图片数据,一个是真实值
        imgs,targets = data
        imgs = imgs.cuda()  # 放到GPU上一会训练用
        targets = targets.cuda()
        # 拿到预测值
        output = model(imgs)
        # 计算损失值
        loss_in = loss(output,targets)
        # 优化开始~ ~ 先梯度清零
        optimizer.zero_grad()
        # 反向传播+更新
        loss_in.backward()
        optimizer.step()
        

测试集

也和上面一样。测试集前面加了一句 model.eval() 就是表明这是测试集,也可以不写,规范就写上。
这里我们使用了accurate记录当前正确的个数。然后除以总个数就是正确率了。

	accurate = 0
    model.eval() # 也可以不写,规范的话就写,用来表明是测试步骤
    with torch.no_grad():
        for data in test_dataloader:
            # 这里的每一次循环 都是一个minibatch  一次for循环里面有64个数据。
            imgs , targets = data
            imgs = imgs.cuda()
            targets = targets.cuda()
            output = model(imgs)
            loss_in = loss(output,targets)

            sum_loss += loss_in
            accurate += (output.argmax(1) == targets).sum() 

其中的 sum() 就是 计算其中每一个概率是否和我们的targets,即真实值相等,sum() 将batch里面64个数据的判断结果相加。

关于argmax:

这里的output.argmax(1) 就是求output 在 axis=1方向上的最大值,返回其索引。
可以打印输出看一下output的值,由于这是在for循环里面的output所以output肯定就是我们设置的batch的大小 一共64个。每一个都应该是有10个数据组成的一维数组,这十个数代表十个分类的概率。
我们打印看一下:
找到最大值是1.2819,然后返回他的索引值5。

[-0.98575, 0.32747, 0.52469, 1.0626, 0.09937, 1.2819, 0.7109, -0.34366, -1.4924, -1.4262]

使用tensorboard可视化训练过程。

使用SummaryWriter:

#添加tensorboard可视化数据
writer = SummaryWriter('../logs_tensorboard')

在训练集里添加:

if num_time % 100 == 0:
       writer.add_scalar('看一下训练集损失值',loss_in.item(),num_time)

在测试集里添加:

writer.add_scalar('看一下测试集损失',sum_loss,i)
	writer.add_scalar('看一下当前测试集正确率',accurate/len(test_data)*100,i)
    i +=1

别忘了 writer.close() 关闭tensorboard。

最后使用 torch.save保存训练结果。

完整代码(训练集+测试集):

import torch
import torchvision
from torch import nn
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter

# 准备数据集
train_data = torchvision.datasets.CIFAR10(root='../data', train=True, transform=torchvision.transforms.ToTensor(),
                                          download=True)
test_data = torchvision.datasets.CIFAR10(root='../data', train=False, transform=torchvision.transforms.ToTensor(),
                                         download=True)


print("训练集的长度:{}".format(len(train_data)))
print("测试集的长度:{}".format(len(test_data)))

# DataLoader加载数据集
train_dataloader = DataLoader(train_data, batch_size=64)
test_dataloader = DataLoader(test_data, batch_size=64)

# 搭建神经网络
class Model(nn.Module):
    def __init__(self):
        super(Model, self).__init__()
        self.model = nn.Sequential(
            nn.Conv2d(3, 32, 5, 1, 2),
            nn.MaxPool2d(2),
            nn.Conv2d(32, 32, 5, 1, 2),
            nn.MaxPool2d(2),
            nn.Conv2d(32, 64, 5, 1, 2),
            nn.MaxPool2d(2),
            nn.Flatten(),
            nn.Linear(64 * 4 * 4, 64),
            nn.Linear(64, 10),
        )

    def forward(self, x):
        x = self.model(x)
        return x

# 创建网络模型
model = Model().cuda()

#添加tensorboard可视化数据
writer = SummaryWriter('../logs_tensorboard')

# 损失函数
loss = nn.CrossEntropyLoss().cuda()

# 优化器
optimizer  = torch.optim.SGD(model.parameters(),lr=0.01,)

i = 1 # 用于绘制测试集的tensorboard

# 开始循环训练
for epoch in range(30):
    num_time = 0 # 记录看看每轮有多少次训练
    print('开始第{}轮训练'.format(epoch+1))
    model.train() # 也可以不写,规范的话是写,用来表明训练步骤
    for data in train_dataloader:
        # 数据分开 一个是图片数据,一个是真实值
        imgs,targets = data
        imgs = imgs.cuda()
        targets = targets.cuda()
        # 拿到预测值
        output = model(imgs)
        # 计算损失值
        loss_in = loss(output,targets)
        # 优化开始~ ~ 先梯度清零
        optimizer.zero_grad()
        # 反向传播+更新
        loss_in.backward()
        optimizer.step()
        num_time +=1

        if num_time % 100 == 0:
            writer.add_scalar('看一下训练集损失值',loss_in.item(),num_time)

    sum_loss = 0 # 记录总体损失值

    # 每轮训练完成跑一下测试数据看看情况
    accurate = 0
    model.eval() # 也可以不写,规范的话就写,用来表明是测试步骤
    with torch.no_grad():
        for data in test_dataloader:
            # 这里的每一次循环 都是一个minibatch  一次for循环里面有64个数据。
            imgs , targets = data
            imgs = imgs.cuda()
            targets = targets.cuda()
            output = model(imgs)
            loss_in = loss(output,targets)

            sum_loss += loss_in
            print('这里是output',output)
            accurate += (output.argmax(1) == targets).sum()

    print('第{}轮测试集的正确率:{:.2f}%'.format(epoch+1,accurate/len(test_data)*100))

    writer.add_scalar('看一下测试集损失',sum_loss,i)
    writer.add_scalar('看一下当前测试集正确率',accurate/len(test_data)*100,i)
    i +=1

    torch.save(model,'../model_pytorch/model_{}.pth'.format(epoch+1))
    print("第{}轮模型训练数据已保存".format(epoch+1))

writer.close()

程序结果:

可以看到训练30轮之后的正确率逼近64%。
在这里插入图片描述

也可以看到每次训练的模型数据都保存了起来,方便后面验证。

在这里插入图片描述

验证集

本次使用图片:在这里插入图片描述
首先PIL方法导入图片。image = Image.open('../data/plane.png')

这里其实可以看一下图片格式数据:

# print(image)  #<PIL.PngImagePlugin.PngImageFile image mode=RGBA size=719x719 at 0x1BB943224C0>

可以看到 是 RGBA的格式 并且图片尺寸是719 * 719的。
我们需要转换成 RGB格式 大小是32 * 32的。

转换成RGB格式:

image = image.convert('RGB')

然后使用Compose组合改变数据类型:

先变成32*32 再变成tensor类型数据。

# 定义 Compose
transform = torchvision.transforms.Compose([torchvision.transforms.Resize((32,32)),
                                            torchvision.transforms.ToTensor()])
# 放入我们要改变的数据                                           
image = transform(image)

放入我们要验证的数据:
这里使用了 torch.no_grad() 表示 后面的过程不需要梯度等优化数据。

with torch.no_grad():
   image = image.cuda()
   output = model(image)

print(output.argmax(1))

可以看到输出结果。表示验证结果是第0个类型。
在这里插入图片描述
我们可以调试看一下CIFAR10的数据集数字对应的图片是什么图片。
在这里插入图片描述
显然第0个就是代表飞机。验证成功。

后面我们又换了一个猫的图片,然后验证出来是5号dog,验证出错了。毕竟正确率只有64%。
我训练了30轮,用笔记本的GPU跑的,1650的GPU,那风扇咔咔转,最近梯子用不了了,就不上云了。

完整代码(验证集):

import torchvision
from torch import nn
import torch
from  PIL import Image

# 把这个模型拿过来 防止模型加载的时候报错
class Model(nn.Module):
    def __init__(self):
        super(Model, self).__init__()
        self.model = nn.Sequential(
            nn.Conv2d(3, 32, 5, 1, 2),
            nn.MaxPool2d(2),
            nn.Conv2d(32, 32, 5, 1, 2),
            nn.MaxPool2d(2),
            nn.Conv2d(32, 64, 5, 1, 2),
            nn.MaxPool2d(2),
            nn.Flatten(),
            nn.Linear(64 * 4 * 4, 64),
            nn.Linear(64, 10),
        )

    def forward(self, x):
        x = self.model(x)
        return x




image = Image.open('../data/plane.png')
# print(image)  #<PIL.PngImagePlugin.PngImageFile image mode=RGBA size=719x719 at 0x1BB943224C0>
#  这里可以看到输出是ARGB类型,四通道,而我们的训练模式都是三通道的。
#  所以这里使转换成RGB三通道的格式

image = image.convert('RGB')

# 使用Compose组合改变数据类型,先变成32*32的 然后在变成tensor类型
transform = torchvision.transforms.Compose([torchvision.transforms.Resize((32,32)),
                                            torchvision.transforms.ToTensor()])

image = transform(image)
model = torch.load('../model_pytorch/model_30.pth')  # 这里面输出的话就是保存的各种参数。

image = torch.reshape(image,(1,3,32,32))
print(image.shape)

model.eval()
with torch.no_grad():
    image = image.cuda()
    output = model(image)

print(output.argmax(1))

这里有个小坑。使用save保存的网络模型,加载的时候必须吧网络模型类定义也写出来,不然会直接报错。

还有一个字典形式保存模型的方法那个就不用再写一遍定义,不过字典这个方法不是很熟。

  • 73
    点赞
  • 417
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 19
    评论
### 回答1: PyTorch的ResNet-18在CIFAR-10数据集的预训练模型是指在经过大规模的图像数据集上进行预训练后的ResNet-18模型,以便在CIFAR-10数据集上进行更好的图像分类任务。 ResNet-18是一个由18个卷积层和全连接层组成的深度神经网络。预训练模型是指在大规模数据上进行训练得到的模型参数,因此具有更好的泛化性能。CIFAR-10是一个包含10个类别的图像分类数据集,用于在小尺寸图像上进行模型训练和评估。 通过使用预训练的ResNet-18模型,在CIFAR-10数据集上进行图像分类任务时,我们可以利用预训练模型的权重参数来加快训练过程并提高准确率。预训练模型的好处是可以从大规模数据中学习到更多的特征表示,这些特征表示通常具有更高的鉴别性,因此可以更好地捕捉图像的关键特征。 对于CIFAR-10数据集,预训练模型可以有效地缩短训练时间并提高模型的收敛速度,因为在预训练模型中已经包含了对图像的一些共享特征的学习。通过在CIFAR-10数据集上进行微调,即在预训练模型的基础上进行进一步的训练,可以逐步调整模型参数以适应CIFAR-10数据集的特定要求,从而提高最终的图像分类性能。 总而言之,PyTorch的ResNet-18在CIFAR-10的预训练模型是通过在大规模数据上进行训练,在CIFAR-10数据集上进行图像分类任务时使用的预训练模型。这个预训练模型可以帮助提高训练速度和分类准确率,并且在模型训练和微调时起到了重要作用。 ### 回答2: PyTorch的ResNet-18是一种在CIFAR-10数据集上进行预训练的深度神经网络模型。CIFAR-10是一个包含10个类别的图像分类数据集,包括飞机、汽车、鸟、猫、鹿、狗、青蛙、马、船和卡车。 ResNet-18是指由18个卷积层和全连接层组成的深度残差网络。该网络的设计思想是通过残差连接(即跳过连接)来解决深度网络中的梯度消失问题,使得网络具有更好的训练效果。这意味着在每个卷积层之后,输入信号可以通过两条路径传递:一条直接连接到后续层,另一条通过卷积操作后再进行连接。这种设计可以使网络更加容易学习输入和输出之间的映射关系。 在CIFAR-10上预训练的ResNet-18模型具有多个优点。首先,这个模型具有较小的参数量和计算复杂度,适合在资源有限的环境下使用。其次,该模型经过在CIFAR-10数据集上的预训练,可以直接用于图像分类任务。通过在CIFAR-10上进行预训练,模型可以学习到一般的图像特征和模式,使其能够更好地泛化到其他类似的图像分类任务中。 通过使用预训练的ResNet-18模型,我们可以利用其已经学到的特征和知识,节省训练时间,并为我们的具体图像分类任务提供一个良好的起点。此外,该模型可以通过微调(fine-tuning)进一步优化,以适应特定任务的需求。 综上所述,PyTorch的ResNet-18在CIFAR-10的预训练模型是一个有价值的工具,可以用于图像分类任务,具有较小的参数量和计算复杂度,预先学习了一般的图像特征和模式,并可以通过微调进一步适应特定任务的需求。 ### 回答3: PyTorch的预训练模型ResNet-18在CIFAR-10数据集上表现出色。首先,CIFAR-10是一个包含10个不同类别的图像数据集,每个类别有6000个图像,共计60000个图像。ResNet-18是一个基于深度残差网络的模型,它具有18个卷积层和全连接层。该模型在ImageNet数据集上进行了预训练,其中包含了1000个类别的图像。 当我们将预训练的ResNet-18模型应用于CIFAR-10数据集时,可以得到很好的结果。因为CIFAR-10数据集的图像尺寸较小(32x32),相对于ImageNet数据集中的图像(224x224),所以ResNet-18模型在CIFAR-10上的训练速度更快。此外,ResNet-18模型通过残差连接解决了深度网络中的梯度消失问题,这使得它在CIFAR-10数据集上的表现也非常稳定。 通过使用预训练模型,我们可以通过迁移学习的方式节省训练时间。我们可以先将ResNet-18加载到内存中,然后只需针对CIFAR-10数据集的最后一层或几层进行微调即可。这样可以有效地提高模型在CIFAR-10上的性能。 总之,PyTorch中的预训练模型ResNet-18在CIFAR-10数据集上表现优秀。它通过残差连接解决了深度网络中的梯度消失问题,具有较快的训练速度和较好的稳定性。使用预训练模型可以节省训练时间,并通过微调模型的方式进一步提高性能。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 19
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

深度不学习!!

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值