Spark Streaming篇1:Spark Streaming 把数据写到hbase,并拼接rowkey

3 篇文章 0 订阅
2 篇文章 0 订阅

Spark Streaming篇1:Spark Streaming 把数据写到hbase,并拼接rowkey

废话不多说,直接上干货

package com.iflytek.kafka

import java.text.SimpleDateFormat

import com.alibaba.fastjson.JSON
import com.iflytek.kafkaManager.HbaseSink
import org.apache.hadoop.hbase.TableName
import org.apache.hadoop.hbase.client.Put
import org.apache.hadoop.hbase.util.Bytes
import org.apache.kafka.clients.consumer.ConsumerRecord
import org.apache.kafka.common.serialization.StringDeserializer
import org.apache.spark.rdd.RDD
import org.apache.spark.streaming.StreamingContext
import org.apache.spark.streaming.dstream.{DStream, InputDStream}
import org.apache.spark.streaming.kafka010.ConsumerStrategies.Subscribe
import org.apache.spark.streaming.kafka010.KafkaUtils
import org.apache.spark.streaming.kafka010.LocationStrategies.PreferConsistent
import org.slf4j.LoggerFactory

import scala.util.Try

/*

 */
object WC2Hbase {
  @transient lazy val logger=LoggerFactory.getLogger(this.getClass())
  def send2MysqlMian(ssc: StreamingContext):Unit={
    ssc.checkpoint("hdfs://cdh01:8020/user/hive/warehouse/checkpointed/sdf")
    val kafkaParams = Map[String, Object](
      "bootstrap.servers" -> "cdh01:9092",
      "key.deserializer" -> classOf[StringDeserializer],
      "value.deserializer" -> classOf[StringDeserializer],
      "group.id" -> "xx001",
      "auto.offset.reset" -> "latest", //earliest latest
      "enable.auto.commit" -> (false: java.lang.Boolean)
    )
    val topics = Array("pd_ry_txjl")
    val stream: InputDStream[ConsumerRecord[String, String]] =
      KafkaUtils.createDirectStream[String, String](
        ssc,
        PreferConsistent,
        Subscribe[String, String](topics, kafkaParams))
    val kv: DStream[(String, String)] = stream.map(record => (record.key, record.value))
    val value: DStream[String] = stream.map(_.value())

    val mapDS = value.map(x => {
      val dataFormat = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss")
      val nObject = JSON.parseObject(x)
      val bodyObject1 = nObject.getJSONObject("body")
      val bodyObject2 = bodyObject1.getJSONObject("body")
      val xqbm = bodyObject2.get("name").toString
      (scala.util.Random.nextInt(10)+"_"+xqbm, 1)//这里我写得玩的,加了一个随机数前缀,实际操作可以在这里拼row_key,加个时间前缀
    })
    
    mapDS.foreachRDD(rdd=>{
      if(!rdd.isEmpty()){
        send2Hbase(rdd)
      }
    })

  }

  def send2Hbase(rdd:RDD[(String, Int)]):Unit={
    if(!rdd.isEmpty){
      rdd.foreachPartition(fp=>{
//        @transient lazy  val  conn = HbaseSink.getHbaseConn
        val  conn = HbaseSink.getHbaseConn
        fp.foreach(f => {
          //         获取指定表的连接
          val table = conn.getTable(TableName.valueOf("xy"))
          try {
            val put = new Put(Bytes.toBytes(f._1.toString))
            put.addColumn(Bytes.toBytes("cf1"), Bytes.toBytes("count"), Bytes.toBytes(f._2.toString))
            Try(table.put(put)).getOrElse(table.close())
          } catch {
            case e: Exception => e.printStackTrace()
            logger.info("rdd写入hbase失败")
          } finally {
            table.close
          }
        })
      })
      logger.info("写入hbase成功")
    }
  }
}
package com.iflytek.kafkaManager

import org.apache.hadoop.hbase.HBaseConfiguration
import org.apache.hadoop.hbase.client.{Connection, ConnectionFactory}
import org.apache.log4j.{LogManager, Logger}
import org.slf4j.LoggerFactory

object HbaseSink extends Serializable{
  @transient lazy val logger=LoggerFactory.getLogger(this.getClass())
  private val conf=HBaseConfiguration.create()

  conf.set("hbase.zookeeper.quorum","cdh01,cdh02,cdh03")
  conf.set("hbase.zookeeper.property.clientPort", "2181")
  conf.set("zookeeper.znode.parent", "/hbase")

  private val conn=ConnectionFactory.createConnection(conf)
//  获取hbase连接
  def getHbaseConn:Connection=conn

}

pom如下:

    <properties>
        <spark.version>2.3.2</spark.version>
        <scala.version>2.11.8</scala.version>
        <hbase.version>1.2.1</hbase.version>
    </properties>

    <dependencies>
        <dependency>
            <groupId>org.apache.spark</groupId>
            <artifactId>spark-core_2.11</artifactId>
            <version>${spark.version}</version>
            <scope>compile</scope>
        </dependency>
        <dependency>
            <groupId>org.apache.spark</groupId>
            <artifactId>spark-sql_2.11</artifactId>
            <version>${spark.version}</version>
            <scope>compile</scope>
        </dependency>
        <dependency>
            <groupId>org.apache.spark</groupId>
            <artifactId>spark-hive_2.11</artifactId>
            <version>${spark.version}</version>
            <scope>compile</scope>
        </dependency>
        <dependency>
            <groupId>org.apache.spark</groupId>
            <artifactId>spark-yarn_2.11</artifactId>
            <version>${spark.version}</version>
            <scope>compile</scope>
        </dependency>
        <dependency>
            <groupId>org.apache.spark</groupId>
            <artifactId>spark-sql_2.11</artifactId>
            <version>${spark.version}</version>
            <scope>compile</scope>
        </dependency>
        <dependency>
            <groupId>org.apache.spark</groupId>
            <artifactId>spark-streaming_2.11</artifactId>
            <version>${spark.version}</version>
            <scope>compile</scope>
        </dependency>
        <dependency>
            <groupId>org.apache.spark</groupId>
            <artifactId>spark-streaming-kafka-0-10_2.11</artifactId>
            <version>${spark.version}</version>
            <scope>compile</scope>
        </dependency>
        <dependency>
            <groupId>org.apache.spark</groupId>
            <artifactId>spark-sql-kafka-0-10_2.11</artifactId>
            <version>${spark.version}</version>
            <scope>compile</scope>
        </dependency>
        <dependency>
            <groupId>com.alibaba</groupId>
            <artifactId>fastjson</artifactId>
            <version>1.2.47</version>
            <scope>compile</scope>
        </dependency>
        <dependency>
            <groupId>org.apache.kafka</groupId>
            <artifactId>kafka-clients</artifactId>
            <version>0.11.0.0</version>
            <scope>compile</scope>
        </dependency>
        
        <dependency>
            <groupId>mysql</groupId>
            <artifactId>mysql-connector-java</artifactId>
            <version>5.1.31</version>
            <scope>compile</scope>
        </dependency>

        <dependency>
            <groupId>c3p0</groupId>
            <artifactId>c3p0</artifactId>
            <version>0.9.1.2</version>
            <scope>compile</scope>
        </dependency>
        <dependency>
            <groupId>com.jolbox</groupId>
            <artifactId>bonecp</artifactId>
            <version>0.8.0.RELEASE</version>
            <scope>compile</scope>
        </dependency>


        <dependency>
            <groupId>org.apache.zookeeper</groupId>
            <artifactId>zookeeper</artifactId>
            <version>3.4.13</version>
            <scope>compile</scope>
        </dependency>

        <dependency>
            <groupId>org.apache.hbase</groupId>
            <artifactId>hbase-client</artifactId>
            <version>${hbase.version}</version>
            <scope>compile</scope>
        </dependency>
        <dependency>
            <groupId>org.apache.hbase</groupId>
            <artifactId>hbase-common</artifactId>
            <version>${hbase.version}</version>
            <scope>compile</scope>
        </dependency>
        <dependency>
            <groupId>org.apache.hbase</groupId>
            <artifactId>hbase-server</artifactId>
            <version>${hbase.version}</version>
            <scope>compile</scope>
        </dependency>
        <!--<dependency>-->
            <!--<groupId>org.apache.hadoop</groupId>-->
            <!--<artifactId>hadoop-client</artifactId>-->
            <!--<version>2.7.2</version>-->
        <!--</dependency>-->
        <!--&lt;!&ndash;guava和hadoop版本得对应&ndash;&gt;-->
        <!--<dependency>-->
            <!--<groupId>com.google.guava</groupId>-->
            <!--<artifactId>guava</artifactId>-->
            <!--<version>18.0</version>-->
        <!--</dependency>-->

            <dependency>
                <groupId>org.scala-lang</groupId>
                <artifactId>scala-library</artifactId>
                <version>${scala.version}</version>
                <scope>compile</scope>
            </dependency>


    </dependencies>

    <build>
        <plugins>
            <plugin>
                <groupId>net.alchim31.maven</groupId>
                <artifactId>scala-maven-plugin</artifactId>
                <version>3.2.0</version>
                <executions>
                    <execution>
                        <id>compile-scala</id>
                        <phase>compile</phase>
                        <goals>
                            <goal>add-source</goal>
                            <goal>compile</goal>
                        </goals>
                    </execution>
                    <execution>
                        <id>test-compile-scala</id>
                        <phase>test-compile</phase>
                        <goals>
                            <goal>add-source</goal>
                            <goal>testCompile</goal>
                        </goals>
                    </execution>
                </executions>
                <configuration>
                    <scalaVersion>2.11.8</scalaVersion>
                </configuration>
            </plugin>
            <plugin>
                <groupId>org.apache.maven.plugins</groupId>
                <artifactId>maven-compiler-plugin</artifactId>
                <version>3.6.1</version>
                <configuration>
                    <source>1.8</source>
                    <target>1.8</target>
                    <compilerArgs>
                        <arg>-extdirs</arg>
                        <arg>${project.basedir}/lib</arg>
                    </compilerArgs>
                </configuration>
            </plugin>
        </plugins>
    </build>
### 回答1: 要将Spark Streaming中的数据更新到MySQL,可以使用以下步骤: 1. 在Spark Streaming中创建一个DStream,该DStream包含要更新到MySQL的数据。 2. 使用foreachRDD函数将DStream转换为RDD,并在RDD上执行更新操作。 3. 在更新操作中,使用JDBC连接到MySQL数据库,并将数据插入到MySQL表中。 以下是一个示例代码,可以将Spark Streaming中的数据更新到MySQL: ```python from pyspark.streaming import StreamingContext from pyspark import SparkContext import mysql.connector # 创建SparkContext和StreamingContext sc = SparkContext(appName="SparkStreamingUpdateMySQL") ssc = StreamingContext(sc, 1) # 创建一个DStream,包含要更新到MySQL的数据 lines = ssc.socketTextStream("localhost", 9999) # 将DStream转换为RDD,并在RDD上执行更新操作 def updateMySQL(rdd): if not rdd.isEmpty(): # 创建MySQL连接 cnx = mysql.connector.connect(user='root', password='password', host='localhost', database='test') cursor = cnx.cursor() # 更新MySQL表 for row in rdd.collect(): query = "UPDATE mytable SET value = %s WHERE id = %s" cursor.execute(query, (row[1], row[0])) # 提交更改并关闭连接 cnx.commit() cursor.close() cnx.close() # 应用更新操作到DStream lines.foreachRDD(updateMySQL) # 启动StreamingContext ssc.start() ssc.awaitTermination() ``` 在上面的代码中,我们首先创建了一个DStream,该DStream包含要更新到MySQL的数据。然后,我们使用foreachRDD函数将DStream转换为RDD,并在RDD上执行更新操作。在更新操作中,我们使用JDBC连接到MySQL数据库,并将数据插入到MySQL表中。最后,我们将更新操作应用到DStream中,并启动StreamingContext。 请注意,在实际应用中,您需要根据自己的需求修改代码中的数据库连接信息和更新操作。 ### 回答2: 对于 Spark Streaming 应用程序来说,将更新的数据写入 MySQL 数据库是非常常见的需求,本文将介绍如何通过 Spark Streaming 在实时应用程序中将更新的数据写入到 MySQL 数据库中。 首先,让我们考虑如何连接 MySQL 数据库。在 Scala 中,我们可以使用 JDBC 连接 MySQL 数据库。需要注意的是,在批处理应用程序中,我们可以使用单个连接来处理一批数据,而在 Spark Streaming 应用程序中,我们需要在每个批次中使用一个新连接。这可以通过在 foreachRDD() 方法中为每个 RDD 创建新的连接来实现。以下是一个使用 Scala 连接 MySQL 数据库的示例代码: ``` import java.sql.{Connection, DriverManager, ResultSet} // Define the MySQL connection parameters val url = "jdbc:mysql://localhost/mydatabase" val driver = "com.mysql.jdbc.Driver" val username = "root" val password = "mypassword" // Define a function to create a new MySQL connection def createConnection(): Connection = { Class.forName(driver) DriverManager.getConnection(url, username, password) } // Define a function to execute a SQL statement on a MySQL connection def executeQuery(connection: Connection, sql: String): ResultSet = { val statement = connection.createStatement() statement.executeQuery(sql) } // Define a function to insert data into a MySQL table def insertData(connection: Connection, data: String): Unit = { val statement = connection.createStatement() statement.executeUpdate(s"insert into mytable values('$data')") statement.close() } ``` 接下来,让我们考虑如何将 Spark Streaming 输入 DStream 中的更新数据写入 MySQL 数据库。对于此操作,我们需要执行以下步骤: 1. 对于每个 RDD,创建一个新的 MySQL 数据库连接。 2. 对于 RDD 中的每个更新数据元素,执行插入操作。 3. 在完成 RDD 处理后,关闭 MySQL 数据库连接。 以下是一个使用 Scala 将 Spark Streaming 输入 DStream 中的数据插入 MySQL 数据库的示例代码: ``` // Define a function to handle each RDD def saveToMySQL(rdd: RDD[String]): Unit = { rdd.foreachPartition { partitionOfRecords => // Create a new MySQL connection val connection = createConnection() partitionOfRecords.foreach { record => // Insert the record into the MySQL table insertData(connection, record) } // Close the MySQL connection connection.close() } } // Create a Spark Streaming context val ssc = new StreamingContext(sparkConf, batchDuration) // Create a DStream from a Kafka topic val messages = KafkaUtils.createDirectStream[String, String]( ssc, LocationStrategies.PreferConsistent, ConsumerStrategies.Subscribe[String, String](topics, kafkaParams) ) // Extract the data from the DStream val data = messages.map(_.value()) // Save the data to MySQL data.foreachRDD { rdd => saveToMySQL(rdd) } // Start the Spark Streaming context ssc.start() ssc.awaitTermination() ``` 在上面的示例代码中,我们使用 foreachPartition() 方法为每个分区创建一个新的 MySQL 连接。由于这个过程是在本地执行的,因此没有任何网络开销。我们之后在新分区上运行相同的操作,并在处理完成后关闭连接。此外,我们可以在 saveToMySQL() 方法中使用一个 Try...Catch 块来处理连接中的任何异常。这些异常可能包括连接错误,插入重复值或插入空值等。 综上,我们可以使用上述步骤来将 Spark Streaming 输入 DStream 中的更新数据写入到 MySQL 数据库中。这也是一个通用的模式,可以用于将 Spark Streaming 数据写入其他类型的数据库或 NoSQL 存储中。需要注意的是,在处理大量数据时,我们需要考虑并行连接的性能问题,以避免出现资源瓶颈和连接池饥饿等问题。 ### 回答3: Spark StreamingSpark生态系统的一个组件,它提供了实时数据处理功能。在进行实时数据处理过程中,经常需要把结果写入数据库中,MongoDB、MySQL这些数据库管理系统具有易于扩展的功能,可以应对大规模实时数据处理的需求。那么在Spark Streaming中如何更新(Update)数据到MySQL呢? 首先需要使用Spark JDBC驱动程序。Spark默认支持PostgreSQL和MySQL数据库。如果要使用其他数据库,需要手动下载JDBC驱动程序,然后通过“--jars”选项将其添加到应用程序的类路径。 其次需要定义MySQL的连接参数,如数据库的URL、用户名和密码等。在代码中可以使用Properties类存储连接参数。示例代码如下: val jdbcUsername ="root" val jdbcPassword ="123456” val jdbcHostname ="localhost” val jdbcPort ="3306" val jdbcDatabase ="test" val jdbcUrl =s"jdbc:mysql://$jdbcHostname:$jdbcPort/$jdbcDatabase" val connectionProperties =newProperties() connectionProperties.put("user",jdbcUsername) connectionProperties.put("password",jdbcPassword) 接下来,需要使用foreachRDD API编写将Spark Streaming中的结果更新到MySQL表中的代码。示例代码如下: processedStream.foreachRDD { rdd => //将结果保存到MySQL表“result”中 rdd.foreachPartition { partition => valconnection =DriverManager.getConnection(jdbcUrl,jdbcUsername,jdbcPassword) connection.setAutoCommit(false) valstatement =connection.prepareStatement( "UPDATEresultSETvalue=? WHEREkey=?") partition.foreach { case (key,value) => statement.setDouble(1,value) //设置value statement.setString(2,key) //设置key statement.executeUpdate() } connection.commit() connection.close() } } 在这段代码中,首先使用foreachRDD API遍历DStream中的每个RDD。然后使用foreachPartition API对每个分区内部的数据进行处理。因为MySQL的连接是非常昂贵的,所以将它们用时间和资源最少的方式传递给分区,这样可以减少连接的数量。 在foreachPartition内部,首先使用DriverManager.getConnection方法创建MySQL连接。如果连接成功,将其设置为手动提交模式,然后使用connection.prepareStatement方法创建statement对象。该对象是用于构建动态SQL语句的。在该语句中使用“?”来占位符,以便稍后填充。在Partion对象中,将从DStream中获取到的每个key-value对设置到statement中,然后执行statement.executeUpdate()方法来提交更改。最后,对于连接对象,使用connection.commit()方法提交所有更改,并使用connection.close()方法关闭连接对象。 因此,在Spark Streaming中更新数据到MySQL是相对简单的。只需要使用Spark JDBC驱动程序、定义MySQL的连接参数、并使用foreachRDD API将结果更新到MySQL表中即可。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值