深入理解JAVA虚拟机

深入理解JAVA虚拟机

Java获得了广泛的认可,除了它拥有一门结构严谨、面向对象的编程语言之外,还有许多不 可忽视的优点:它摆脱了硬件平台的束缚,实现了“一次编写,到处运行”的理想; 它提供了一种相对安全的内存管理和访问机制避免了绝大部分内存泄漏和指针越界问题;它实现了热点代码检测运行时编译及优化,这使得Java应用能随着运行时间的增长而获得更高的性能;它有一套完善的应用程 序接口,还有无数来自商业机构和开源社区的第三方类库来帮助用户实现各种各样的功能。

image-20210812201859777

准确式内存管理:准确式内存管理是指虚拟机可以知道内存中某个位置的数据具体是什么类型。譬如内存中有一个32bit的整数123456,虚拟机将有能力分辨出它到底是一个指向了123456的内存地址的引用类型还是一个数值为123456的整数,准确分辨出哪些内存是引用类型,这也是在垃圾收集时准确判断堆上的数据是否还可能被使用的前提。(原因是垃圾收集后对象将可能会被移动位置,如果地址为123456的对象移动到654321,在没有明确信息表明内存中哪些数据是引用类型的前提下,那虚拟机肯定是不敢把内存中所有为123456的值改成654321的,所以要使用句柄来保持引用值的稳定,当他为数值的时候就可能被使用 如果是引用时则可以垃圾回收清除就行)(Exact VM)

HotSpot虚拟机的热点代码探测能力可以通过执行计数器找出最具有编译价值的代码,然后通知即时编译器以方法为单位进行编译。如果一个方法被频繁调用,或方法中有效循环次数很多,将会分别触发标准即时编译和栈上替换编译(On-Stack Replacement,OSR)行为

PART1:自动内存管理机制

1 Java内存区域与内存溢出异常

Java与C++之间有一堵由内存动态分配垃圾收集技术所围成的高墙,墙外面的人想进去,墙里面的人却想出来。

对于从事C、C++程序开发的开发人员来说,在内存管理领域,他们既是拥有最高权力的“皇帝”, 又是从事最基础工作的劳动人民——既拥有每一个对象的“所有权”,又担负着每一个对象生命从开始 到终结的维护责任。

对于Java程序员来说,在虚拟机自动内存管理机制的帮助下,不再需要为每一个new操作去写配对 的delete/free代码,不容易出现内存泄漏和内存溢出问题,看起来由虚拟机管理内存一切都很美好。不 过,也正是因为Java程序员把控制内存的权力交给了Java虚拟机,一旦出现内存泄漏和溢出方面的问题,如果不了解虚拟机是怎样使用内存的,那排查错误、修正问题将会成为一项异常艰难的工作。

2 运行时数据区域

Java虚拟机在执行Java程序的过程中会把它所管理的内存划分为若干个不同的数据区域。这些区域有各自的用途,以及创建和销毁的时间,有的区域随着虚拟机进程的启动而一直存在,有些区域则是依赖用户线程的启动和结束而建立和销毁

image-20210813093543081

2.1 程序计数器

程序计数器(Program Counter Register)是一块较小的内存空间,它可以看作是当前线程所执行的字节码的行号指示器。在Java虚拟机的概念模型里,字节码解释器工作时就是通过改变这个计数器的值来选取下一条需要执行的字节码指令,它是程序控制流的指示器,分支、循环、跳转、异常处理、线程恢复等基础功能都需要依赖这个计数器来完成。

由于Java虚拟机的多线程是通过线程轮流切换、分配处理器执行时间的方式来实现的,在任何一个确定的时刻,一个处理器(对于多核处理器来说是一个内核)都只会执行一条线程中的指令。因此,为了线程切换后能恢复到正确的执行位置,每条线程都需要有一个独立的程序计数器,各条线程之间计数器互不影响,独立存储,我们称这类内存区域为“线程私有”的内存。

如果线程正在执行的是一个Java方法,这个计数器记录的是正在执行的虚拟机字节码指令的地址;如果正在执行的是本地(Native)方法,这个计数器值则应为空(Undefined)。此内存区域是唯 一一个在《Java虚拟机规范》中没有规定任何OutOfMemoryError情况的区域。

2.2 Java虚拟机栈

与程序计数器一样,Java虚拟机栈(Java Virtual Machine Stack)也是线程私有的,它的生命周期与线程相同。虚拟机栈描述的是Java方法执行的线程内存模型:每个方法被执行的时候,Java虚拟机都会同步创建一个栈帧(Stack Frame)用于存储局部变量表操作数栈动态连接方法出口等信息。每一个方法被调用直至执行完毕的过程,就对应着一个栈帧在虚拟机栈中从入栈到出栈的过程。 (方法与栈帧一对一)

“栈”通常就是指这里讲的虚拟机栈,或者更多的情况下只是指虚拟机栈中局部变量表部分。

局部变量表存放了编译期可知的各种Java虚拟机基本数据类型(boolean、byte、char、short、int、 float、long、double)、对象引用(reference类型,它并不等同于对象本身,可能是一个指向对象起始地址的引用指针,也可能是指向一个代表对象的句柄或者其他与此对象相关的位置)和returnAddress类型(指向了一条字节码指令的地址)。

这些数据类型在局部变量表中的存储空间以局部变量**槽(Slot)**来表示,其中64位长度的long和double类型的数据会占用两个变量槽,其余的数据类型只占用一个。局部变量表所需的内存空间在编译期间完成分配,当进入一个方法时,这个方法需要在栈帧中分配多大的局部变量空间是完全确定的,在方法运行期间不会改变局部变量表的大小。请读者注意,这里说的“大小”是指变量槽的数量, 虚拟机真正使用多大的内存空间(譬如按照1个变量槽占用32个比特、64个比特,或者更多)来实现一个变量槽,这是完全由具体的虚拟机实现自行决定的事情。

对这个内存区域规定了两类异常状况:如果线程请求的栈深度大于虚拟机所允许的深度,将抛出StackOverflowError异常;如果Java虚拟机栈容量可以动态扩展,当栈扩展时无法申请到足够的内存会抛出OutOfMemoryError异常。( HotSpot虚拟机的栈容量是不可以动态扩展的,以前的Classic虚拟机倒是可以。所以在HotSpot虚拟机上是不会由于虚拟机栈无法扩展而导致OutOfMemoryError异常——只要线程申请栈空间成功了就不会有OOM,但是如果申请时就失败,仍然是会出现OOM异常的)

2.3 Java堆

对于Java应用程序来说,Java堆(Java Heap)是虚拟机所管理的内存中最大的一块。Java堆是被所有线程共享的一块内存区域,在虚拟机启动时创建。此内存区域的唯一目的就是存放对象实例,Java世界里“几乎”所有的对象实例都在这里分配内存。在《Java虚拟机规范》中对Java堆的描述是:“所有的对象实例以及数组都应当在堆上分配”

Java堆是垃圾收集器管理的内存区域,因此一些资料中它也被称作“GC堆”(Garbage Collected Heap)。从回收内存的角度看,现代垃圾收集器大部分都是基于分代收集理论设计的

如果从分配内存的角度看,所有线程共享的Java堆中可以划分出多个线程私有的分配缓冲区(Thread Local Allocation Buffer,TLAB),以提升对象分配时的效率。不过无论从什么角度,无论如何划分,都不会改变Java堆中存储内容的共性,无论是哪个区域,存储的都只能是对象的实例,将Java堆细分的目的只是为了更好地回收内存,或者更快地分配内存

Java堆可以处于物理上不连续的内存空间中,但在逻辑上它应该被视为连续的,这点就像我们用磁盘空间去存储文件一样,并不要求每个文件都连续存放。但对于大对象(典型的如数组对象),多数虚拟机实现出于实现简单、存储高效的考虑,很可能会要求连续的内存空间。

Java堆既可以被实现成固定大小的,也可以是可扩展的,不过当前主流的Java虚拟机都是按照可扩展来实现的(通过参数-Xmx和-Xms设定)。

2.4 方法区

方法区(Method Area)与Java堆一样,是各个线程共享的内存区域,它用于存储"已被"虚拟机加载的类型信息、常量、静态变量、即时编译器编译后的代码缓存等数据。虽然《Java虚拟机规范》中把方法区描述为堆的一个逻辑部分,但是它却有一个别名叫作“非堆”(Non-Heap),目的是与Java堆区分开来。

《Java虚拟机规范》对方法区的约束是非常宽松的,除了和Java堆一样不需要连续的内存和可以选 择固定大小或者可扩展外,甚至还可以选择不实现垃圾收集。相对而言,垃圾收集行为在这个区域的确是比较少出现的,但并非数据进入了方法区就如永久代的名字一样“永久”存在了。这区域的内存回收目标主要是针对常量池的回收和对类型的卸载,一般来说这个区域的回收效果比较难令人满意,尤其是类型的卸载,条件相当苛刻,但是这部分区域的回收有时又确实是必要的。

如果方法区无法满足新的内存分配需求时,将抛出 OutOfMemoryError异常。

2.5 运行时常量池

运行时常量池(Runtime Constant Pool)是方法区的一部分。Class文件中除了有类的版本、字段、方法、接口等描述信息外,还有一项信息是常量池表(Constant Pool Table),用于存放编译期生成的各种字面量与符号引用,这部分内容将在类加载后存放到方法区的运行时常量池中。

Java虚拟机对于Class文件每一部分(自然也包括常量池)的格式都有严格规定,如每一个字节用于存储哪种数据都必须符合规范上的要求才会被虚拟机认可、加载和执行**,但对于运行时常量池,《Java虚拟机规范》并没有做任何细节的要求**,不同提供商实现的虚拟机可以按照自己的需要来实现这个内存区域,不过一般来说,除了保存Class文件中描述的符号引用外,还会把由符号引用翻译出来的直接引用也存储在运行时常量池中。 运行时常量池相对于Class文件常量池的另外一个重要特征是具备动态性,Java语言并不要求常量一定只有编译期才能产生,也就是说,并非预置入Class文件中常量池的内容才能进入方法区运行时常量池,运行期间也可以将新的常量放入池中,这种特性被开发人员利用得比较多的便是String类的intern()方法。

既然运行时常量池是方法区的一部分,自然受到方法区内存的限制,当常量池无法再申请到内存时会抛出OutOfMemoryError异常。

2.6 直接内存

直接内存(Direct Memory)并不是虚拟机运行时数据区的一部分,也不是《Java虚拟机规范》中 定义的内存区域。但是这部分内存也被频繁地使用,而且也可能导致OutOfMemoryError异常出现(第6章6.1.3出现)

在JDK 1.4中新加入了NIO(New Input/Output)类,引入了一种基于通道(Channel)与缓冲区(Buffer)的I/O方式,它可以使用Native函数直接分配堆外内存,然后通过一个存储在Java堆里面DirectByteBuffer对象作为这块内存的引用进行操作。这样能在一些场景中显著提高性能,因为避免了在Java堆和Native堆中来回复制数据。

显然,本机直接内存的分配不会受到Java堆大小的限制,但是,既然是内存,则肯定还是会受到本机总内存(包括物理内存、SWAP分区或者分页文件)大小以及处理器寻址空间的限制,一般服务 器管理员配置虚拟机参数时,会根据实际内存去设置-Xmx等参数信息,但经常忽略掉直接内存,使得各个内存区域总和大于物理内存限制(包括物理的和操作系统级的限制),从而导致动态扩展时出现OutOfMemoryError异常。

3 HotSpot虚拟机对象

3.1 对象的创建

当Java虚拟机遇到一条字节码new指令时,首先将去检查这个指令的参数(比如 new int?new char?不同的类型)是否能在常量池中定位到一个类的符号引用,并且检查这个符号引用代表的类是否已被加载、解析和初始化过。如果没有,那必须先执行相应的类加载过程。

在类加载检查通过后,接下来虚拟机将为新生对象分配内存。对象所需内存的大小在类加载完成后便可完全确定,为对象分配空间的任务实际上便等同于把一块确定大小的内存块从Java堆中划分出来。假设Java堆中内存是绝对规整的,所有被使用过的内存都被放在一 边,空闲的内存被放在另一边,中间放着一个指针作为分界点的指示器,那所分配内存就仅仅是把那个指针向空闲空间方向挪动一段与对象大小相等的距离,这种分配方式称为“指针碰撞”(Bump The Pointer)。但如果Java堆中的内存并不是规整的,已被使用的内存和空闲的内存相互交错在一起,那 就没有办法简单地进行指针碰撞了,虚拟机就必须维护一个列表,记录上哪些内存块是可用的,在分配的时候从列表中找到一块足够大的空间划分给对象实例,并更新列表上的记录,这种分配方式称为“空闲列表”(Free List)。选择哪种分配方式由Java堆是否规整决定,而Java堆是否规整又由所采用的垃圾收集器是否带有空间压缩整理(Compact)的能力决定。因此,当使用Serial、ParNew等带压缩整理过程的收集器时,系统采用的分配算法是指针碰撞,既简单又高效;而当使用CMS这种基于清除 (Sweep)算法的收集器时,理论上就只能采用较为复杂的空闲列表来分配内存。

除如何划分可用空间之外,还有另外一个需要考虑的问题:对象创建在虚拟机中是非常频繁的行为,即使仅仅修改一个指针所指向的位置,在并发情况下也并不是线程安全的,可能出现正在给对象A分配内存,指针还没来得及修改,对象B又同时使用了原来的指针来分配内存的情况。解决这个问题有两种可选方案:一种是对分配内存空间的动作进行同步处理——实际上虚拟机是采用CAS配上失败重试的方式保证更新操作的原子性;另外一种是把内存分配的动作按照线程划分在不同的空间之中进 行,即每个线程在Java堆中预先分配一小块内存,称为本地线程分配缓冲区(Thread Local Allocation Buffer,TLAB),哪个线程要分配内存,就在哪个线程的本地缓冲区中分配,只有本地缓冲区用完了,分配新的缓存区时才需要同步锁定。虚拟机是否使用TLAB,可以通过-XX:+/UseTLAB参数来设定。(所以在介绍堆的时候提到TLAB帮助线程更好分配内存)

内存分配完成之后,虚拟机必须将分配到的内存空间(但不包括对象头)都初始化为零值,如果使用了TLAB的话,这一项工作也可以提前至TLAB分配时顺便进行。这步操作保证了对象的实例字段在Java代码中可以不赋初始值就直接使用,使程序能访问到这些字段的数据类型所对应的零值。

接下来,Java虚拟机还要对对象进行必要的设置,例如这个对象是哪个类的实例、如何才能找到类的元数据信息、对象的哈希码(实际上对象的哈希码会延后到真正调用Object::hashCode()方法时才计算)、对象的GC分代年龄等信息。这些信息存放在对象的对象头(Object Header)之中。根据虚拟机当前运行状态的不同,如是否启用偏向锁等,对象头会有不同的设置方式。

在上面工作都完成之后,从虚拟机的视角来看,一个新的对象已经产生了。但是从Java程序的视 角看来,对象创建才刚刚开始——构造函数,即Class文件中的()方法还没有执行,所有的字段都为默认的零值,对象需要的其他资源和状态信息也还没有按照预定的意图构造好。一般来说(由字节码流中new指令后面是否跟随invokespecial指令所决定,Java编译器会在遇到new关键字的地方同时生成这两条字节码指令,但如果直接通过其他方式产生的则不一定如此),new指令之后会接着执行()方法

HotSpot虚拟机的字节码解释器:

// 确保常量池中存放的是已解释的类 
if (!constants->tag_at(index).is_unresolved_klass()) { // 断言确保是klassOop和instanceKlassOop(这部分下一节介绍) 
    oop entry = (klassOop) *constants->obj_at_addr(index); assert(entry->is_klass(), "Should be resolved klass"); klassOop k_entry = (klassOop) entry; assert(k_entry->klass_part()->oop_is_instance(), "Should be instanceKlass"); instanceKlass* ik = (instanceKlass*) k_entry->klass_part(); // 确保对象所属类型已经经过初始化阶段 
    if ( ik->is_initialized() && ik->can_be_fastpath_allocated() ) { // 取对象长度 
        size_t obj_size = ik->size_helper(); oop result = NULL; // 记录是否需要将对象所有字段置零值 
        bool need_zero = !ZeroTLAB; 
        // 是否在TLAB中分配对象 
        if (UseTLAB) { result = (oop) THREAD->tlab().allocate(obj_size); }
        if (result == NULL) { need_zero = true; // 直接在eden中分配对象 
                             retry: HeapWord* compare_to = *Universe::heap()->top_addr(); 
                             HeapWord* new_top = compare_to + obj_size; // cmpxchg是x86中的CAS指令,这里是一个C++方法,通过CAS方式分配空间,并发失败的话,转到retry中重试直至成功分配为止 
                                                                                               if (new_top <= *Universe::heap()->end_addr()) { if (Atomic::cmpxchg_ptr(new_top, Universe::heap()->top_addr(), compare_to) != compare_to) { goto retry; }result = (oop) compare_to; } }if (result != NULL) { // 如果需要,为对象初始化零值 
            if (need_zero ) { HeapWord* to_zero = (HeapWord*) result + sizeof(oopDesc) / oopSize; obj_size -= sizeof(oopDesc) / oopSize; if (obj_size > 0 ) { memset(to_zero, 0, obj_size * HeapWordSize); } }// 根据是否启用偏向锁,设置对象头信息 
            if (UseBiasedLocking) { result->set_mark(ik->prototype_header()); } 
            else { result->set_mark(markOopDesc::prototype()); }
            result->set_klass_gap(0); 
            result->set_klass(k_entry); // 将对象引用入栈,继续执行下一条指令 
            SET_STACK_OBJECT(result, 0);
UPDATE_PC_AND_TOS_AND_CONTINUE(3, 1); } } }

有上述代码可见 对象的创建流程大体如下:

确定new指令参数(int char xxx…)是否在运行时常量池(存放对象的各种信息与编译器产生的各种字面量 常量等信息)中,是否被加载过(没加载过则立即执行类加载过程)=>为对象分配内存空间=>是否使用TLAB,若使用了则由TLAB进行分配并进行内容的初始化即零值否则在JAVA堆的eden区中进行初始化===>设置对象头信息(如是否使用偏向锁等等)===>创建成功,将对象引用压入栈(线程的虚拟机栈,放到其中的局部变量表(存放基本类型,引用类型,returnAddress类型)中,因为对象总是由线程在方法内部创建的,所以应放到线程的栈中),读取线程程序计数器中的内容跳转执行下一条指令。

3.2 对象的内存布局

在HotSpot虚拟机里,对象在堆内存中的存储布局可以划分为三个部分:

  • 对象头(Header) 包括两类信息

    1. 用于存储对象自身的运行时数据 官方称它 为“Mark Word”。(哈希码(HashCode)、GC分代年龄、锁状态标志…)在32位的HotSpot虚拟机中,如对象未被同步锁锁定的状态下,Mark Word的32个比特存储空间中的25个比特用于存储对象哈希码,4个比特用于存储对象分代年龄,2个比特用于存储锁标志位,1个比特固定为0,在其他状态(轻量级锁定、重量级锁定、GC标 记、可偏向)下对象的存储内容如表

      image-20210813150141386

    2. 类型指针 (即对象指向它的类型元数据的指针,Java虚拟机通过这个指针来确定该对象是哪个类的实例。如果对象是一个Java数组,那在对象头中还必须有一块用于记录数组长度的数据,因为虚拟机可以通过普通Java对象的元数据信息确定Java对象的大小,但是如果数组的长度是不确定的,将无法通过元数据中的信息推断出数组的大小。)

      image-20210813150717108

  • 实例数据(Instance Data)(对象真正存储的有效信息即我们在程序代码里面所定义的各种类型的字段内容,无论是从父类继承下来的,还是在子类中定义的字段都必须记录起来。这部分的存储顺序会 受到虚拟机分配策略参数(-XX:FieldsAllocationStyle参数)和字段在Java源码中定义顺序的影响。 相同宽度的字段总是被分配到一起存 放,在满足这个前提条件的情况下,在父类中定义的变量会出现在子类之前。如果HotSpot虚拟机的 +XX:CompactFields参数值为true(默认就为true),那子类之中较窄的变量也允许插入父类变量的空 隙之中,以节省出一点点空间。

  • 对齐填充(Padding)(这并不是必然存在的,也没有特别的含义,它仅仅起着占位符的作 用。由于HotSpot虚拟机的自动内存管理系统要求对象起始地址必须是8字节的整数倍)

3.3 对象的访问定位

Java程序会通过栈上的reference数据来操作堆上的具体对象。主流的访问方式主要有使用句柄直接指针两种:

  • 如果使用句柄访问的话,Java堆中将可能会划分出一块内存来作为句柄池,reference中存储的就是对象的句柄地址,而句柄中包含了对象实例数据与类型数据各自具体的地址信息。(好处:稳定,对象在垃圾回收时候可能被移动 这个时候不需要修改reference 而只用改句柄中的指针即可)

    image-20210813151732884

  • 如果使用直接指针访问的话,Java堆中对象的内存布局就必须考虑如何放置访问类型数据的相关信息,reference中存储的直接就是对象地址,如果只是访问对象本身的话,就不需要多一次间接访问的开销。(HotSpot主要采用这种方式)

    image-20210813151803162

4 垃圾收集器和内存分配策略

4.1 概述

第2章介绍了Java内存运行时区域的各个部分,其中程序计数器、虚拟机栈、本地方法栈3个区域随线程而生,随线程而灭,栈中的栈帧随着方法的进入和退出而有条不紊地执行着出栈和入栈操作。每一个栈帧中分配多少内存基本上是在类结构确定下来时就已知的(1. 栈帧中局部变量表用槽slot来放各种不同类型的数据信息,注意只存放各种数据类型大小(编译期间能知道数据类型信息 占多少个字节对应多少个槽),与堆不同不需要因为分支不一样对象数目不一样分配不同的大小。可以理解为堆中分配的空间即 对象数目*局部变量表中对应类型大小 2.尽管在运行期会由即时编译器进行一些优化,但在基于概念模型的讨论里,大体上可以认为是编译期可知的),因此这几个区域的内存分配和回收都具备确定性, 在这几个区域内就不需要过多考虑如何回收的问题,当方法结束或者线程结束时,内存自然就跟随着回收了。

而Java堆和方法区这两个区域则有着很显著的不确定性:一个接口的多个实现类需要的内存可能会不一样,一个方法所执行的不同条件分支所需要的内存也可能不一样,只有处于运行期间,我们才能知道程序究竟会创建哪些对象,创建多少个对象,这部分内存的分配和回收是动态的

4.2 对象存活判断

4.2.1 引用计数算法

在对象中添加一个引用计数器,每当有一个地方引用它时,计数器值就加一;当引用失效时,计数器值就减一;任何时刻计数器为零的对象就是不可能再被使用的。

但是,在Java领域,至少主流的Java虚拟机里面都没有选用引用计数算法来管理内存,主要原因是,这个看似简单的算法有很多例外情况要考虑,必须要配合大量额外处理才能保证正确地工作,譬如单纯的引用计数就很难解决对象之间相互循环引用的问题。

引用计数算法的缺陷:

/*** testGC()方法执行后,objA和objB会不会被GC呢? * @author zzm */
public class ReferenceCountingGC {
    public Object instance = null;
    private static final int _1MB = 1024 * 1024;
    /*** 这个成员属性的唯一意义就是占点内存,以便能在GC日志中看清楚是否有回收过 */
    private byte[] bigSize = new byte[2 * _1MB];

    public static void testGC() {
        ReferenceCountingGC objA = new ReferenceCountingGC();
        ReferenceCountingGC objB = new ReferenceCountingGC();
        objA.instance = objB;
        objB.instance = objA;
        objA = null;
        objB = null; // 假设在这行发生GC,objA和objB是否能被回收? 
        System.gc(); 
    } 
}

运行结果:

image-20210813155125753

从运行结果中可以清楚看到内存回收日志中包含“4603K->210K”,意味着虚拟机并没有因为这两个对象互相引用就放弃回收它们,这也从侧面说明了Java虚拟机并不是通过引用计数算法来判断对象是否存活的。

4.2.2 可达性分析算法

这个算法的基本思路就是通过一系列称为“GC Roots”的根对象作为起始节点,从这些节点开始,根据引用关系向下搜索,搜索过程所走过的路径称为“引用链”(Reference Chain),如果某个对象到GC Roots间没有任何引用链相连,或者用图论的话来说就是从GC Roots到这个对象不可达时,则证明此对象是不可能再被使用的。

如图:对象5/6/7虽然互相关联,但是它们到GC Roots不可达因此会被判断为可回收的对象。

image-20210813155413900

在Java技术体系里面,固定可作为GC Roots的对象包括以下几种:

  • 在虚拟机栈(栈帧中的本地变量表)中引用的对象,譬如各个线程被调用的方法堆栈中使用到的参数局部变量临时变量等。
  • 方法区中类静态属性引用的对象,譬如Java类的引用类型静态变量。
  • 方法区中常量引用的对象,譬如字符串常量池(String Table)里的引用。
  • 本地方法栈中JNI(即通常所说的Native方法)引用的对象
  • Java虚拟机内部的引用,如基本数据类型对应的Class对象,一些常驻的异常对象(比如 NullPointExcepiton、OutOfMemoryError)等,还有系统类加载器。
  • 所有被同步锁(synchronized关键字)持有的对象
  • 反映Java虚拟机内部情况的JMXBean、JVMTI中注册的回调、本地代码缓存等。

除了这些固定的GC Roots集合以外,根据用户所选用的垃圾收集器以及当前回收的内存区域不同,还可以有其他对象“临时性”地加入,共同构成完整GC Roots集合。

4.2.3 引用

在JDK 1.2版之后,Java对引用的概念进行了扩充,将引用分为强引用(Strongly Reference)、软引用(Soft Reference)、弱引用(Weak Reference)和虚引用(Phantom Reference)4种,这4种引用强度依次逐渐减弱。

  • 强引用是最传统的“引用”的定义,是指在程序代码之中普遍存在的引用赋值,即类似“Object obj=new Object()”这种引用关系。无论任何情况下,只要强引用关系还存在,垃圾收集器就永远不会回收掉被引用的对象。
  • 软引用是用来描述一些还有用,但非必须的对象。只被软引用关联着的对象,在系统将要发生内存溢出异常前,会把这些对象列进回收范围之中进行第二次回收,如果这次回收还没有足够的内存,才会抛出内存溢出异常。在JDK 1.2版之后提供了SoftReference类来实现软引用。
  • 弱引用也是用来描述那些非必须对象,但是它的强度比软引用更弱一些,被弱引用关联的对象只能生存到下一次垃圾收集发生为止。**当垃圾收集器开始工作,无论当前内存是否足够,都会回收掉只被弱引用关联的对象。**在JDK 1.2版之后提供了WeakReference类来实现弱引用。
  • 虚引用也称为“幽灵引用”或者“幻影引用”,它是最弱的一种引用关系。一个对象是否有虚引用的存在,完全不会对其生存时间构成影响,也无法通过虚引用来取得一个对象实例。为一个对象设置虚引用关联的唯一目的只是为了能在这个对象被收集器回收时收到一个系统通知。在JDK 1.2版之后提供了PhantomReference类来实现虚引用。
4.2.4 生存还是死亡?

即使在可达性分析算法中判定为不可达的对象,也不是“非死不可”的,这时候它们暂时还处于“缓刑”阶段,要真正宣告一个对象死亡,至少要经历两次标记过程:如果对象在进行可达性分析后发现没有与GC Roots相连接的引用链,那它将会被第一次标记,随后进行一次筛选,筛选的条件是此对象是否有必要执行finalize()方法。假如对象没有覆盖finalize()方法,或者finalize()方法已经被虚拟机调用过(对象在finalize中自救),那么虚拟机将这两种情况都视为“没有必要执行”(接着直接把内存回收,从而对象就不存在自救了)。 所以才会有下面代码段的finalize只会执行一次的说法。

如果这个对象被判定为确有必要执行finalize()方法,那么该对象将会被放置在一个名为F-Queue的队列之中,并在稍后由一条由虚拟机自动建立的、低调度优先级的Finalizer线程去执行它们的finalize()方法。这里所说的“执行”是指虚拟机会触发这个方法开始运行,但并不承诺一定会等待它运行结束。 这样做的原因是,如果某个对象的finalize()方法执行缓慢,或者更极端地发生了死循环,将很可能导致F-Queue队列中的其他对象永久处于等待,甚至导致整个内存回收子系统的崩溃。finalize()方法是对象逃脱死亡命运的最后一次机会,稍后收集器将对F-Queue中的对象进行第二次小规模的标记,如果对象要在finalize()中成功拯救自己——只要重新与引用链上的任何一个对象建立关联即可,譬如把自己(this关键字)赋值给某个类变量或者对象的成员变量,那在第二次标记时它将被移出“即将回收”的集合;如果对象这时候还没有逃脱,那基本上它就真的要被回收了。

整体流程:

1.可达性分析算法分析发现没有与GC Roots相连接—》2.第一次标记 —》3.判断是否有必要执行finalize方法,没有则直接回收内存 —》4.有就放入FQueue中—》5.虚拟机创建Finalizer线程去执行它们的finalize方法—》6.第二次标记是否与引用链有关联 有就移出队列,没有就回收—》1

/*** 此代码演示了两点: * 1.对象可以在被GC时自我拯救。 * 2.这种自救的机会只有一次,因为一个对象的finalize()方法最多只会被系统自动调用一次 *  */
public class FinalizeEscapeGC {
    public static FinalizeEscapeGC SAVE_HOOK = null;

    public void isAlive() {
        System.out.println("yes, i am still alive :)");
    }

    @Override
    protected void finalize() throws Throwable {
        super.finalize();
        System.out.println("finalize method executed!");
        FinalizeEscapeGC.SAVE_HOOK = this;
    }

    public static void main(String[] args) throws Throwable {
        SAVE_HOOK = new FinalizeEscapeGC(); 
        //对象第一次成功拯救自己 
        SAVE_HOOK = null; 
        System.gc(); 
        // 因为Finalizer方法优先级很低,暂停0.5秒,以等待它 
        Thread.sleep(500); 
        if (SAVE_HOOK != null) { SAVE_HOOK.isAlive(); } else { System.out.println("no, i am dead :("); }
        // 下面这段代码与上面的完全相同,但是这次自救却失败了
        SAVE_HOOK = null;
        System.gc();
        // 因为Finalizer方法优先级很低,暂停0.5秒,以等待它 
        Thread.sleep(500); 
        if (SAVE_HOOK != null) { 
            SAVE_HOOK.isAlive(); } 
        else { System.out.println("no, i am dead :("); } } }

运行结果:

image-20210813170334670

注意把finalize()方法理解为“关闭外部资源”而不是释放自己的内存更好理解。

4.2.5 回收方法区

《Java虚拟机规范》中提到过可以不要求虚拟机在方法区中实现垃圾收集,事实上也确实有未实现或未能完整实现方法区类型卸载的收集器存在(如JDK 11时期的ZGC收集器就不支持类卸载),方法区垃圾收集的“性价比”通常也是比较低的:在Java堆中,尤其是在新生代中,对常规应用进行一次垃圾收集通常可以回收70%至99%的内存空间,相比之下,方法区回收囿于苛刻的判定条件,其区域垃圾收集的回收成果往往远低于此。

方法区的垃圾收集主要回收两部分内容:废弃的常量不再使用的类型。回收废弃常量与回收Java堆中的对象非常类似。举个常量池中字面量回收的例子,假如一个字符串“java”曾经进入常量池中,但是当前系统又没有任何一个字符串对象的值是“java”,换句话说,已经没有任何字符串对象引用常量池中的“java”常量,且虚拟机中也没有其他地方引用这个字面量。如果在这时发生内存回收,而且垃圾收集器判断确有必要的话,这个“java”常量就将会被系统清理出常量池。常量池中其他类(接口)、方法、字段的符号引用也与此类似。

判定一个常量是否“废弃”还是相对简单,而要判定一个类型是否属于“不再被使用的类”的条件就比较苛刻了。需要同时满足下面三个条件:

  • 该类所有的实例都已经被回收,也就是Java堆中(因为所有对象的实例都放在堆中的)不存在该类及其任何派生子类的实例。
  • 加载该类的类加载器已经被回收,这个条件除非是经过精心设计的可替换类加载器的场景,如 OSGi、JSP的重加载等,否则通常是很难达成的。
  • 该类对应的java.lang.Class对象没有在任何地方被引用,无法在任何地方通过反射访问该类的方法。

Java虚拟机被允许对满足上述三个条件的无用类进行回收,这里说的仅仅是**“被允许”**,而并不是和对象一样,没有引用了就必然会回收。关于是否要对类型进行回收

在大量使用反射、动态代理、CGLib等字节码框架,动态生成JSP以及OSGi这类频繁自定义类加载器的场景中,通常都需要Java虚拟机具备类型卸载的能力,以保证不会对方法区造成过大的内存压力。

4.3 垃圾收集算法

从如何判定对象消亡的角度出发,垃圾收集算法可以划分为“引用计数式垃圾收集”(Reference Counting GC)和“追踪式垃圾收集”(Tracing GC)两大类,这两类也常被称作“直接垃圾收集”和“间接垃圾收集”。

4.3.1 分代收集理论

当前商业虚拟机的垃圾收集器,大多数都遵循了“分代收集”(Generational Collection)的理论进行设计,分代收集名为理论,实质是一套符合大多数程序运行实际情况的经验法则,它建立在两个分 代假说之上:

1)弱分代假说(Weak Generational Hypothesis):绝大多数对象都是朝生夕灭的。

2)强分代假说(Strong Generational Hypothesis):熬过越多次垃圾收集过程的对象就越难以消亡。

这两个分代假说共同奠定了多款常用的垃圾收集器的一致的设计原则:收集器应该将Java堆划分出不同的区域,然后将回收对象依据其年龄(年龄即对象熬过垃圾收集过程的次数)分配到不同的区域之中存储。显而易见,如果一个区域中大多数对象都是朝生夕灭,难以熬过垃圾收集过程的话,那么把它们集中放在一起,每次回收时只关注如何保留少量存活而不是去标记那些大量将要被回收的对象,就能以较低代价回收到大量的空间;如果剩下的都是难以消亡的对象,那把它们集中放在一块,虚拟机便可以使用较低的频率来回收这个区域,这就同时兼顾了垃圾收集的时间开销和内存的空间有效利用。

分代收集理论仍在不断发展之中, 如何实现也有许多细节可以改进,被既定的代码框架约束反而不便。其实我们只要仔细思考一下,也很容易发现分代收集并非只是简单划分一下内存区域那么容易,它至少存在一个明显的困难:对象不是孤立的,对象之间会存在跨代引用。 假如要现在进行一次只局限于新生代区域内的收集(Minor GC),但新生代中的对象是完全有可能被老年代所引用的,为了找出该区域中的存活对象,不得不在固定的GC Roots之外,再额外遍历整个老年代中所有对象来确保可达性分析结果的正确性,反过来也是一样。遍历整个老年代所有对象的方案虽然理论上可行,但无疑会为内存回收带来很大的性能负担。为了解决这个问题,就需要对分代收集理论添加第三条经验法则:

3)跨代引用假说(Intergenerational Reference Hypothesis):跨代引用相对于同代引用来说仅占极少数。

这其实是可根据前两条假说逻辑推理得出的隐含推论:存在互相引用关系的两个对象,是应该倾向于同时生存或者同时消亡的。举个例子,如果某个新生代对象存在跨代引用,由于老年代对象难以消亡,该引用会使得新生代对象在收集时同样得以存活,进而在年龄增长之后晋升到老年代中,这时跨代引用也随即被消除了。

依据这条假说,我们就不应再为了少量的跨代引用去扫描整个老年代,也不必浪费空间专门记录每一个对象是否存在及存在哪些跨代引用,只需在新生代上建立一个全局的数据结构(该结构被称为**“记忆集”Remembered Set**),这个结构把老年代划分成若干小块,标识出老年代的哪一块内存会存在跨代引用。此后当发生Minor GC时,只有包含了跨代引用的小块内存里的对象才会被加入到GC Roots进行扫描。虽然这种方法需要在对象改变引用关系(如将自己或者某个属性赋值)时维护记录数据的正确性,会增加一些运行时的开销,但比起收集时扫描整个老年代来说仍然是划算的。

  • 部分收集(Partial GC):指目标不是完整收集整个Java堆的垃圾收集,其中又分为:

    • 新生代收集(Minor GC/Young GC):指目标只是新生代的垃圾收集。

    • 老年代收集(Major GC/Old GC):指目标只是老年代的垃圾收集。目前只有CMS收集器会有单独收集老年代的行为。另外请注意“Major GC”这个说法现在有点混淆,在不同资料上常有不同所指, 读者需按上下文区分到底是指老年代的收集还是整堆收集。

    • 混合收集(Mixed GC):指目标是收集整个新生代以及部分老年代的垃圾收集。目前只有G1收集器会有这种行为。

  • 整堆收集(Full GC):收集整个Java方法区的垃圾收集。

4.3.2 标记清除算法(Mark-Sweep)

首先标记出所有需要回收的对象,在标记完成后,统一回收掉所有被标记的对象,也可以反过来,标记存活的对象,统一回收所有未被标记的对象。标记过程就是对象是否属于垃圾的判定过程。

它的主要缺点有两个:

第一个是执行效率不稳定,如果Java堆中包含大量对象,而且其中大部分是需要被回收的,这时必须进行大量标记和清除的动作,导致标记和清除两个过 程的执行效率都随对象数量增长而降低;

第二个是内存空间的碎片化问题,标记、清除之后会产生大量不连续的内存碎片,空间碎片太多可能会导致当以后在程序运行过程中需要分配较大对象时无法找到足够的连续内存而不得不提前触发另一次垃圾收集动作。

image-20210813175203199

4.3.3 标记复制算法(Semispace Copying)

为了解决标记-清除算法面对大量可回收对象时执行效率低,提出了一种称为“半区复制”(Semispace Copying)的垃圾收集算法,它将可用内存按容量划分为大小相等的两块,每次只使用其中的一块。当这一块的内存用完了,就将还存活着的对象复制到另外一块上面,然后再把已使用过的内存空间一次清理掉。如果内存中多数对象都是存活的,这种算法将会产生大量的内存间复制的开销,但对于多数对象都是可回收的情况,算法需要复制的就是占少数的存活对象,而且每次都是针对整个半区进行内存回收,分配内存时也就不用考虑有空间碎片的复杂情况,只要移动堆顶指针,按顺序分配即可。这样实现简单,运行高效,不过其缺陷也显而易见,这种复制回收算法的代价是将可用内存缩小为了原来的一半,空间浪费未免太多了一 点。

image-20210813175459800

现在的商用Java虚拟机大多都优先采用了这种收集算法去回收新生代,IBM公司曾有一项专门研究对新生代“朝生夕灭”的特点做了更量化的诠释——新生代中的对象有98%熬不过第一轮收集。因此并不需要按照1∶1的比例来划分新生代的内存空间。

Andrew Appel针对具备“朝生夕灭”特点的对象,提出了一种更优化的半区复制分代策略,现在称为“Appel式回收”。HotSpot虚拟机的Serial、ParNew等新生代收集器均采用了这种策略来设计新生代的内存布局。Appel式回收的具体做法是把新生代分为一块较大的Eden空间和两块较小的 Survivor空间,每次分配内存只使用Eden和其中一块Survivor。发生垃圾搜集时,将Eden和Survivor中仍然存活的对象一次性复制到另外一块Survivor空间上,然后直接清理掉Eden和已用过的那块Survivor空间。HotSpot虚拟机默认Eden和Survivor的大小比例是8∶1,也即每次新生代中可用内存空间为整个新生代容量的90%(Eden的80%加上一个Survivor的10%),只有一个Survivor空间,即10%的新生代是会被“浪费”的。

98%的对象可被回收仅仅是“普通场景”下测得的数据,任何人都没有办法百分百保证每次回收都只有不多于10%的对象存活,因此Appel式回收还有一个充当罕见情况的“逃生门”的安全设计,当Survivor空间不足以容纳一次Minor GC之后存活的对象时,就需要依赖其他内存区域(实际上大多就是老年代)进行分配担保(Handle Promotion)。

内存的分配担保好比我们去银行借款,如果我们信誉很好,在98%的情况下都能按时偿还,于是银行可能会默认我们下一次也能按时按量地偿还贷款,只需要有一个担保人能保证如果我不能还款时,可以从他的账户扣钱,那银行就认为没有什么风险了。内存的分配担保也一样,如果另外一块 Survivor空间没有足够空间存放上一次新生代收集下来的存活对象,这些对象便将通过分配担保机制直接进入老年代,这对虚拟机来说就是安全的。

4.3.4 标记整理算法(Mark-Compact)

标记-复制算法在对象存活率较高时就要进行较多的复制操作,效率将会降低。更关键的是,如果不想浪费50%的空间,就需要有额外的空间进行分配担保,以应对被使用的内存中所有对象都100%存活的极端情况,所以在老年代一般不能直接选用这种算法

针对老年代对象的存亡特征,Edward Lueders提出了另外一种有针对性的“标记-整理”(Mark-Compact)算法,其中的标记过程仍然与“标记-清除”算法一样,但后续步骤不是直接对可回收对象进行清理,而是让所有存活的对象都向内存空间一端移动,然后直接清理掉边界以外的内存。

标记-清除算法与标记-整理算法的本质差异在于前者是一种非移动式的回收算法,而后者是移动式的。

image-20210813181442312

如果移动存活对象,尤其是在老年代这种每次回收都有大量对象存活区域,移动存活对象并更新所有引用这些对象的地方将会是一种极为负重的操作,而且这种对象移动操作必须全程暂停用户应用程序才能进行,这就更加让使用者不得不小心翼翼地权衡其弊端了,像这样的停顿被最初的虚拟机设计者形象地描述为“Stop The World”

但如果跟标记-清除算法那样完全不考虑移动和整理存活对象的话,弥散于堆中的存活对象导致的空间碎片化问题就只能依赖更为复杂的内存分配器和内存访问器来解决。譬如通过“分区空闲分配链 表”来解决内存分配问题

基于以上两点,是否移动对象都存在弊端,移动则内存回收时会更复杂,不移动则内存分配时会更复杂。

从垃圾收集的停顿时间来看,不移动对象停顿时间会更短,甚至可以不需要停顿,但是从整个程序的吞吐量来看,移动对象会更划算。此语境中,吞吐量的实质是赋值器(Mutator,可以理解为 使用垃圾收集的用户程序,本书为便于理解,多数地方用“用户程序”或“用户线程”代替)与收集器的效率总和。即使不移动对象会使得收集器的效率提升一些,但因内存分配和访问相比垃圾收集频率要高得多,这部分的耗时增加,总吞吐量仍然是下降的。HotSpot虚拟机里面关注吞吐量的Parallel Scavenge收集器是基于标记-整理算法的,而关注延迟的CMS收集器则是基于标记-清除算法的。

还有一种“和稀泥式”解决方案可以不在内存分配和访问上增加太大额外负担,做法是让虚拟机平时多数时间都采用标记-清除算法,暂时容忍内存碎片的存在,直到内存空间的碎片化程度已经大到影响对象分配时,再采用标记-整理算法收集一次,以获得规整的内存空间。前面提到的基于标 记-清除算法的CMS收集器面临空间碎片过多时采用的就是这种处理办法。

4.4 HotSpot的算法实现细节

4.4.1 根节点枚举

我们以可达性分析算法中从GC Roots集合找引用链这个操作作为介绍虚拟机高效实现的第一个例子。固定可作为GC Roots的节点主要在全局性的引用(例如常量或类静态属性)与执行上下文(例如 栈帧中的本地变量表)中,尽管目标明确,但查找过程要做到高效并非一件容易的事情。

所有收集器在根节点枚举这一步骤时都是必须暂停用户线程的,因此毫无疑问根节点枚举与之前提及的整理内存碎片一样会面临相似的“Stop The World”的困扰。

现在可达性分析算法耗时最长的查找引用链的过程已经可以做到与用户线程一起并发,但根节点枚举始终还是必须在一个能保障一致性快照中才得以进行——这里“一致性”的意思是整个枚举期间执行子系统看起来就像被冻结在某个时间点上,不会出现分析过程中,根节点集合的对象引用关系还在不断变化的情况,若这点不能满足的话,分析结果准确性也就无法保证。这是导致垃圾收集过程必须停顿所有用户线程的其中一个重要原因,即使是号称停顿时间可控,或者(几乎)不会发生停顿的CMS、G1、 ZGC等收集器,枚举根节点时也是必须要停顿的。

由于目前主流Java虚拟机使用的都是准确式垃圾收集所以当用户线程停顿下来之后,其实并不需要一个不漏地检查完所有执行上下文和全局的引用位置,虚拟机应当是有办法直接得到哪些地方存放着对象引用的。

在HotSpot的解决方案里,是使用一组称为OopMap的数据结构来达到这个目的。一旦类加载动作完成的时候, HotSpot就会把对象内什么偏移量上是什么类型的数据计算出来也会在特定的位置记录下栈里和寄存器里哪些位置是引用。这样收集器在扫描时就可以直接得知这些信息了,并不需要真正一个不漏地从方法区等GC Roots开始查找。

下图是HotSpot虚拟机客户端模式下生成的一段String::hashCode()方法的本地代码,可以看到在0x026eb7a9处的call指令有OopMap记录,它指明了EBX寄存器和栈中偏移量为16的内存区域中各有一个普通对象指针(Ordinary Object Pointer,OOP)的引用,有效范围为从call指令开始直到0x026eb730(指令流的起始位置)+142(OopMap记录的偏移量)=0x026eb7be,即hlt指令为止。

image-20210814075842770

4.4.2 安全点

在OopMap的协助下,HotSpot可以快速准确地完成GC Roots枚举,但一个很现实的问题随之而来:可能导致引用关系变化,或者说导致OopMap内容变化的指令非常多,如果为每一条指令都生成对应的OopMap,那将会需要大量的额外存储空间,这样垃圾收集伴随而来的空间成本就会变得无法忍受的高昂。

实际上HotSpot也的确没有为每条指令都生成OopMap,前面已经提到,只是在“特定的位置”记录了这些信息,这些位置被称为安全点。有了安全点的设定,也就决定了用户程序执行时并非在代码指令流的任意位置都能够停顿下来开始垃圾收集,而是强制要求必须执行到达安全点后才能够暂停。

安全点的选定既不能太少以至于让收集器等待时间过长,也不能太过频繁以至于过分增大运行时的内存负荷。安全点位置的选取基本上是以“是否具有让程序长时间执行的特征”为标准进行选定的,因为每条指令执行的时间都非常短暂,程序不太可能因为指令流长度太长这样的原因而长时间执行,“长时间执行”的最明显特征就是指令序列的复用,例如方法调用循环跳转异常跳转等都属于指令序列复用,所以只有具有这些功能的指令才会产生安全点。 (为什么选定这些位置作为安全点:主要的目的就是避免程序长时间无法进入 Safe Point。比如 JVM 在做 GC 之前要等所有的应用线程进入安全点,如果有一个线程一直没有进入安全点,就会导致 GC 时 JVM 停顿时间延长。比如这里,超大的循环导致执行 GC 等待时间过长。

对于安全点,另外一个需要考虑的问题是,如何在垃圾收集发生时让所有线程(这里其实不包括执行JNI调用的线程)都跑到最近的安全点,然后停顿下来。这里有两种方案可供选择:抢先式中断主动式中断

抢先式中断不需要线程的执行代码主动去配合,在垃圾收集发生时,系统首先把所有用户线程全部中断,如果发现有用户线程中断的地方不在安全点上,就恢复这条线程执行,让它一会再重新中断,直到跑到安全点上。现在几乎没有虚拟机实现采用抢先式中断来暂停线程响应GC事件。

而主动式中断的思想是当垃圾收集需要中断线程的时候,不直接对线程操作,仅仅简单地设置一个标志位,各个线程执行过程时会不停地主动去轮询这个标志,一旦发现中断标志为真时就自己在最近的安全点上主动中断挂起轮询标志的地方和安全点是重合的另外还要加上所有创建对象和其他需要在Java堆上分配内存的地方,这是为了检查是否即将要发生垃圾收集,避免没有足够内存分配新对象。

4.4.3 安全区域

安全点机制保证了程序执行时,在不太长的时间内就会遇到可进入垃圾收集过程的安全点。但是,程序“不执行”的时候呢?所谓的程序不执行就是没有分配处理器时间,典型的场景便是用户线程处于Sleep状态或者Blocked状态,这时候线程无法响应虚拟机的中断请求,不能再走到安全的地方去中断挂起自己,虚拟机也显然不可能持续等待线程重新被激活分配处理器时间。对于这种情况,就必须引入安全区域(Safe Region)来解决。

安全区域是指能够确保在某一段代码片段之中,引用关系不会发生变化,因此,在这个区域中任意地方开始垃圾收集都是安全的。我们也可以把安全区域看作被扩展拉伸了的安全点

当用户线程执行到安全区域里面的代码时,首先会标识自己已经进入了安全区域,那样当这段时间里虚拟机要发起垃圾收集时就不必去管这些已声明自己在安全区域内的线程了。当线程要离开安全区域时,它要检查虚拟机是否已经完成了根节点枚举(或者垃圾收集过程中其他需要暂停用户线程的阶段),如果完成了,那线程就当作没事发生过,继续执行;否则它就必须一直等待,直到收到可以离开安全区域的信号为止。

4.4.4 记忆集与卡表

讲解分代收集理论的时候,提到了为解决对象跨代引用所带来的问题,垃圾收集器在新生代中建立了名为记忆集(Remembered Set)的数据结构,用以避免把整个老年代加进GC Roots扫描范围。

记忆集是一种用于记录非收集区域指向收集区域的指针集合的抽象数据结构。如果我们不考虑效率和成本的话,最简单的实现可以用非收集区域中所有含跨代引用的对象数组来实现这个数据结构。

Class RememberedSet { Object[] set[OBJECT_INTERGENERATIONAL_REFERENCE_SIZE]; }

这种记录全部含跨代引用对象的实现方案,无论是空间占用还是维护成本都相当高昂。而在垃圾收集的场景中,收集器只需要通过记忆集判断出某一块非收集区域是否存在有指向了收集区域的指针就可以了,并不需要了解这些跨代指针的全部细节。那设计者在实现记忆集的时候,便可以选择更为粗犷的记录粒度来节省记忆集的存储和维护成本。

  • 字长精度:每个记录精确到一个机器字长(就是处理器的寻址位数,如常见的32位或64位,这个精度决定了机器访问物理内存地址的指针长度),该字包含跨代指针。

  • 对象精度:每个记录精确到一个对象,该对象里有字段含有跨代指针。

  • 卡精度:每个记录精确到一块内存区域,该区域内有对象含有跨代指针。

第三种“卡精度”所指的是用一种称为“卡表”(Card Table)的方式去实现记忆集,这也是目前最常用的一种记忆集实现形式

卡表就是记忆集的一种具体实现,它定义了记忆集的记录精度、与堆内存的映射关系等。关于卡表与记忆集的关系,读者不妨按照Java语言中HashMap与Map的关系来类比理解。

卡表最简单的形式可以只是一个字节数组,而HotSpot虚拟机确实也是这样做的。以下这行代码是HotSpot默认的卡表标记逻辑:

image-20210814092425534

字节数组CARD_TABLE的每一个元素都对应着其标识的内存区域中一块特定大小的内存块,这个内存块被称作“卡页”(Card Page)。一般来说,卡页大小都是以2的N次幂的字节数,通过上面代码可以看出HotSpot中使用的卡页是2的9次幂,即512字节(地址右移9位,相当于用地址除以512)。那如 果卡表标识内存区域的起始地址是0x0000的话,数组CARD_TABLE的第0、1、2号元素,分别对应了地址范围为0x0000~0x01FF、0x0200~0x03FF、0x0400~0x05FF的卡页内存块

image-20210814092518724

一个卡页的内存中通常包含不止一个对象,只要卡页内有一个(或更多)对象的字段存在着跨代指针,那就将对应卡表的数组元素的值标识为1,称为这个元素变脏(Dirty),没有则标识为0。在垃圾收集发生时,只要筛选出卡表中变脏的元素,就能轻易得出哪些卡页内存块中包含跨代指针,把它们加入GC Roots中一并扫描。

4.4.5 写屏障

我们已经解决了如何使用记忆集来缩减GC Roots扫描范围的问题,但还没有解决卡表元素如何维护的问题,例如它们何时变脏、谁来把它们变脏等。

在HotSpot虚拟机里是通过写屏障技术维护卡表状态的。写屏障可以看作在虚拟机层面对“引用类型字段赋值”这个动作的AOP切面,在引用对象赋值时会产生一个环形(Around)通知,供程序执行额外的动作,也就是说赋值的前后都在写屏障的覆盖范畴内。在赋值前的部分的写屏障叫作写前屏障(Pre-Write Barrier),在赋值后的则叫作写后屏障(Post-Write Barrier)。HotSpot虚拟机的许多收集器中都有使用到写屏障,但直至G1收集器出现之前,其他收集器都只用到了写后屏障。

写后屏障更新卡表:

void oop_field_store(oop* field, oop new_value) { 
    // 引用字段赋值操作 
    *field = new_value; 
    // 写后屏障,在这里完成卡表状态更新 
    post_write_barrier(field, new_value); 
}

写前屏障原始快照:

void oop_field_store(oop* field) { 
    // 写前屏障,记录删除操作。保留快照--->现状的操作
    pre_write_barrier(field); 
    // 删除引用字段
    delete(field);
}

应用写屏障后,虚拟机就会为所有赋值操作生成相应的指令,一旦收集器在写屏障中增加了更新卡表操作,无论更新的是不是老年代对新生代对象的引用,每次只要对引用进行更新,就会产生额外的开销,不过这个开销与Minor GC时扫描整个老年代的代价相比还是低得多的

除了写屏障的开销外,卡表在高并发场景下还面临着“伪共享”(False Sharing)问题。伪共享是处理并发底层细节时一种经常需要考虑的问题,现代中央处理器的缓存系统中是以缓存行(Cache Line) 为单位存储的,当多线程修改互相独立的变量时,如果这些变量恰好共享同一个缓存行,就会彼此影响(写回、无效化或者同步)而导致性能降低,这就是伪共享问题。 假设处理器的缓存行大小为64字节,由于一个卡表元素占1个字节,64个卡表元素将共享同一个缓 存行。这64个卡表元素对应的卡页总的内存为32KB(64×512字节),也就是说如果不同线程更新的对象正好处于这32KB的内存区域内,就会导致更新卡表时正好写入同一个缓存行而影响性能。为了避免伪共享问题,一种简单的解决方案是不采用无条件的写屏障,而是先检查卡表标记,只有当该卡表元素未被标记过时才将其标记为变脏,即将卡表更新的逻辑变为以下代码所示:

if (CARD_TABLE [this address >> 9] != 0) 
CARD_TABLE [this address >> 9] = 0;

在JDK 7之后,HotSpot增加了一个新的参数-XX:+UseCondCardMark,用来决定是否开启 卡表更新的条件判断。开启会增加一次额外判断的开销,但能够避免伪共享问题,两者各有性能损耗,是否打开要根据应用实际运行情况来进行测试权衡。

4.4.6 并发的可达性分析

在前面曾经提到了当前主流编程语言的垃圾收集器基本上都是依靠可达性分析算法来判定对象是否存活的,可达性分析算法理论上要求全过程都基于一个能保障一致性的快照中才能够进行分析,这意味着必须全程冻结用户线程的运行。在根节点枚举这个步骤中,由于GC Roots相比起整个Java堆中全部的对象毕竟还算是极少数,且在各种优化技巧(如OopMap)的加持下,它带来 的停顿已经是非常短暂且相对固定(不随堆容量而增长)的了。可从GC Roots再继续往下遍历对象图,这一步骤的停顿时间就必定会与Java堆容量直接成正比例关系了:堆越大,存储的对象越多,对象图结构越复杂,要标记更多对象而产生的停顿时间自然就更长,这听起来是理所当然的事情。

要知道包含**“标记”**阶段是所有追踪式垃圾收集算法的共同特征,如果这个阶段会随着堆变大而等比例增加停顿时间,其影响就会波及几乎所有的垃圾收集器,同理可知,如果能够削减这部分停顿时间的话,那收益也将会是系统性的。

想解决或者降低用户线程的停顿,就要先搞清楚为什么必须在一个能保障一致性的快照上才能进行对象图的遍历?为了能解释清楚这个问题,我们引入三色标记(Tri-color Marking)作为工具来辅助推导,把遍历对象图过程中遇到的对象,按照“是否访问过”这个条件标记成以下三种颜色:

  • 白色:表示对象尚未被垃圾收集器访问过。显然在可达性分析刚刚开始的阶段,所有的对象都是白色的,若在分析结束的阶段,仍然是白色的对象,即代表不可达

  • 黑色:表示对象已经被垃圾收集器访问过,且这个对象的所有引用都已经扫描过。黑色的对象代表已经扫描过,它是安全存活的,如果有其他对象引用指向了黑色对象,无须重新扫描一遍。黑色对象不可能直接(不经过灰色对象)指向某个白色对象。

  • 灰色:表示对象已经被垃圾收集器访问过,但这个对象上至少存在一个引用还没有被扫描过。

关于可达性分析的扫描过程,读者不妨发挥一下想象力,把它看作对象图上一股以灰色为波峰的波纹从黑向白推进的过程,如果用户线程此时是冻结的,只有收集器线程在工作,那不会有任何问题。但如果用户线程与收集器是并发工作呢?收集器在对象图上标记颜色,同时用户线程在修改引用关系——即修改对象图的结构,这样可能出现两种后果。一种是把原本消亡的对象错误标记为存活,这不是好事,但其实是可以容忍的,只不过产生了一点逃过本次收集的浮动垃圾而已,下次收集清理掉就好。另一种是把原本存活的对象错误标记为已消亡,这就是非常致命的后果了,程序肯定会因此发生错误。

image-20210814110315744

当且仅当以下两个条件同时满足时,会产生“对象消失”的问题,即原本应该是黑色的对象被误标为白色:

  • 赋值器插入了一条或多条从黑色对象到白色对象的新引用;

  • 赋值器删除了全部从灰色对象到该白色对象的直接或间接引用。

我们要解决并发扫描时的对象消失问题,只需破坏这两个条件的任意一个即可。由此分别产生了两种解决方案:增量更新(Incremental Update)和原始快照(Snapshot At The Beginning, SATB)。

增量更新要破坏的是第一个条件,当黑色对象插入新的指向白色对象的引用关系时,就将这个新插入的引用记录下来,等并发扫描结束之后,再将这些记录过的引用关系中的黑色对象为根,重新扫描一次。这可以简化理解为,黑色对象一旦新插入了指向白色对象的引用之后,它就变回灰色对象了。

https://blog.csdn.net/Yao_ziwei/article/details/117781372

增量更新具体操作

从正常角度来讲,Card Table能记录下所有新生代到老年代的引用修改,但是实际的应用中,Card Table没有被用来跟踪新生代到老年代的引用修改,因为新生代的对象朝生夕灭,引用更新频繁,这样新生代基本全为dirty card,而处理这些dirty card也需要消耗资源,不如直接扫描新生代划算。在具体实现中,JVM用扫描整个新生代来代替处理Card Table中新生代到老年代引用关系的变化,而用Card Table和Mod-Union Table记录下老年代到老年代的引用修改,并在重新标记阶段进行处理。
所以总的来说,用增量更新实现的最终标记阶段是通过 以下三个步骤来完成的。
1 重新扫描新生代。
2 重新扫描并发标记结束时老年代的Card Table记录下的对象。
3 重新扫描并发标记结束时老年代的Mod-Union Table记录下的对象。
步骤2和步骤3的具体做法是把dirty page里面的黑色对象中新增的灰色对象字段重新扫描一遍。

原始快照要破坏的是第二个条件,当灰色对象要删除指向白色对象的引用关系时,就将这个要删除的引用记录下来,在并发扫描结束之后,再将这些记录过的引用关系中的灰色对象为根,重新扫描一次。这也可以简化理解为,无论引用关系删除与否,都会按照刚刚开始扫描那一刻的对象图快照来进行搜索。 在原始快照中运用到了写前屏障,因为要在引用被删除前把灰色对象到白色对象的关系记录下来。

以上无论是对引用关系记录的插入还是删除,虚拟机的记录操作都是通过写屏障实现的。在HotSpot虚拟机中,增量更新和原始快照这两种解决方案都有实际应用,譬如,CMS是基于增量更新来做并发标记的,G1、Shenandoah则是用原始快照来实现。

对于并发标记的问题,在上文我们主要关心的是“对象消失”的问题,该问题一旦发生,后果将非常严重,因为用户正在使用的对象是绝对不能被当成死亡对象回收的。而在下文,将讲述两者解决浮动垃圾(并发更新时产生的新对象 即黑色指向白色的引用 由于黑色已扫描过 记录不到新的白色对象 成为浮动垃圾)问题的策略。
在CMS垃圾收集器中使用的是增量更新,增量更新追踪的是黑色对象到白色对象的直接引用,所以除了并发阶段的新增对象,在原始对象图中应该死亡的对象,增量更新算法都能够察觉到。
但是对于G1中的原始快照,可以解决误将活的标记成死的问题(对象消失)但相反死的也可能标记成活的 比如下图本来灰色到白色正常更新删除他们之间的引用,但是会被记录下来,到时候重新扫描这个记录反而导致删除失败 死的对象活下来了。另外原始快照也是无法回收并发阶段的新增对象。(浮动垃圾)

img

img

图大概意思是新增了黑色到白色的引用和删除了灰色到白色的引用,不同方法关注点不一样。在上述对象图中,对象A是死亡的,但是在原始快照算法中,它会被标记为存活对象。

总结:

  1. 原始快照的重新标记阶段比增量更新快,因为增量更新要重新扫描新生代,原始快照只需要处理记录下的引用修改。
  2. 对于对象消失问题,两者都能解决。
  3. 原始快照的浮动垃圾比增量更新多。

4.5 经典垃圾回收器

HotSpot虚拟机的垃圾收集器:

image-20210814111705664

上图展示了七种作用于不同分代的收集器,如果两个收集器之间存在连线,就说明它们可以搭配使用。

4.5.1 Serial收集器(新生代、客户端)

Serial收集器是最基础、历史最悠久的收集器,曾经(在JDK 1.3.1之前)是HotSpot虚拟机新生代收集器的唯一选择。大家只看名字就能够猜到,这个收集器是一个单线程工作的收集器,但它的“单线程”的意义并不仅仅是说明它只会使用一个处理器或一条收集线程去完成垃圾收集工作,更重要的是强调在它进行垃圾收集时,必须暂停其他所有工作线程,直到它收集结束。

但是它依然是HotSpot虚拟机运行在客户端模式下的默认新生代收集器,有着优于其他收集器的地方,那就是简单而高效(与其他收集器的单线程相比),对于内存资源受限的环境(在用户桌面的应用场景以及近年来流行的部分微服务应用中,分配给虚拟机管理的内存一般来说并不会特别大,收集几十兆甚至一两百兆的新生代只要几十毫秒),它是所有收集器里额外内存消耗(Memory Footprint)最小的;对于单核处理器或处理器核心数较少的环境来说,Serial收集器由于没有线程交互的开销,专心做垃圾收集自然可以获得最高的单线程收集效率。

Serial/Serial Old收集器运行过程:

image-20210814113306612

4.5.2 ParNew收集器(新生代、服务端)

ParNew收集器实质上是Serial收集器的多线程并行版本,除了同时使用多条线程进行垃圾收集之外,其余的行为包括Serial收集器可用的所有控制参数(例如:-XX:SurvivorRatio、-XX: PretenureSizeThreshold、 -XX:HandlePromotionFailure等)、收集算法、Stop The World、对象分配规则、回收策略等都与Serial收集器完全一致,在实现上这两种收集器也共用了相当多的代码。ParNew/Serial Old收集器的工作过程如图所示:

image-20210814113536790

ParNew收集器除了支持多线程并行收集之外,其他与Serial收集器相比并没有太多创新之处,但它却是不少运行在服务端模式下的HotSpot虚拟机,尤其是JDK 7之前的遗留系统中首选的新生代收集器,其中有一个与功能、性能无关但其实很重要的原因是:除了Serial收集器外,目前只有它能与CMS收集器配合工作。

在JDK 5发布时,HotSpot推出了一款在强交互应用中几乎可称为具有划时代意义的垃圾收集器 ——CMS收集器。这款收集器是HotSpot虚拟机中第一款真正意义上支持并发的垃圾收集器,它首次实现了让垃圾收集线程与用户线程(基本上)同时工作

后来G1收集器带着CMS继承者和替代者的光环登场。G1是一个面向全堆的收集器不再需要其他新生代收集器的配合工作。所以自JDK 9开始,ParNew加CMS收集器的组合就不再是官方推荐的服务端模式下的收集器解决方案了。官方希望它能完全被G1所取代,甚至还取消了ParNew加 Serial Old以及Serial加CMS这两组收集器组合的支持(本节第一张图)

ParNew收集器在单核心处理器的环境中绝对不会有比Serial收集器更好的效果,甚至由于存在线程交互的开销,该收集器在通过超线程(Hyper-Threading)技术实现的伪双核处理器环境中都不能百分之百保证超越Serial收集器。当然,随着可以被使用的处理器核心数量的增加,ParNew对于垃圾收集时 系统资源的高效利用还是很有好处的。它默认开启的收集线程数与处理器核心数量相同,在处理器核心非常多(譬如32个,现在CPU都是多核加超线程设计,服务器达到或超过32个逻辑核心的情况非常 普遍)的环境中,可以使用-XX:ParallelGCThreads参数来限制垃圾收集的线程数。

Parallel Scavenge收集器及后面提到的G1收集器等都没有使用HotSpot中原本设计的垃圾收集器的分代框架,而选择另外独立实现。

4.5.3 Parallel Scavenge收集器(新生代、服务端)

Parallel Scavenge收集器也是一款新生代收集器,它同样是基于标记-复制算法实现的收集器,也是能够并行收集的多线程收集器。

Parallel Scavenge收集器的特点是它的关注点与其他收集器不同,CMS等收集器的关注点是尽可能地缩短垃圾收集时用户线程的停顿时间,而Parallel Scavenge收集器的目标则是达到一个可控制的吞吐量(Throughput)。所谓吞吐量就是处理器用于运行用户代码的时间与处理器总消耗时间的比值, 即:

image-20210814115134859

Parallel Scavenge收集器提供了两个参数用于精确控制吞吐量,分别是控制最大垃圾收集停顿时间的-XX:MaxGCPauseMillis参数以及直接设置吞吐量大小的-XX:GCTimeRatio参数。

-XX:MaxGCPauseMillis参数允许的值是一个大于0的毫秒数,收集器将尽力保证内存回收花费的时间不超过用户设定值。不过大家不要异想天开地认为如果把这个参数的值设置得更小一点就能使得系统的垃圾收集速度变得更快,垃圾收集停顿时间缩短是以牺牲吞吐量和新生代空间为代价换取的:系统把新生代调得小一些,收集300MB新生代肯定比收集500MB快,但这也直接导致垃圾收集发生得更频繁,原来10秒收集一次、每次停顿100毫秒,现在变成5秒收集一次、每次停顿70毫秒。停顿时间的确在下降,但吞吐量也降下来了。

-XX:GCTimeRatio参数的值则应当是一个大于0小于100的整数,也就是垃圾收集时间占总时间的比率,相当于吞吐量的倒数。譬如把此参数设置为19,那允许的最大垃圾收集时间就占总时间的5%(即1/(1+19)),默认值为99,即允许最大1%(即1/(1+99))的垃圾收集时间。

Parallel Scavenge收集器也经常被称作“吞吐量优先收集器

Parallel Scavenge收集器还有一个参数-XX:+UseAdaptiveSizePolicy值得我们关注。这是一个开关参数,当这个参数被激活之后,就不需要人工指定新生代的大小(-Xmn)、Eden与Survivor区的比例(-XX:SurvivorRatio)、晋升老年代对象大小(-XX:PretenureSizeThreshold)等细节参数了,虚拟机会根据当前系统的运行情况收集性能监控信息,动态调整这些参数以提供最合适的停顿时间或者最大的吞吐量。这种调节方式称为垃圾收集的自适应的调节策略(GC Ergonomics)

自适应调节策略也是Parallel Scavenge收集器区别于ParNew收集器的一个重要特性。

4.5.4 Serial Old收集器(客户端、老年代)

Serial Old是Serial收集器的老年代版本,它同样是一个单线程收集器,使用标记-整理算法。这个收集器的主要意义也是供客户端模式下的HotSpot虚拟机使用。

如果在服务端模式下,它也可能有两种用途:一种是在JDK 5以及之前的版本中与Parallel Scavenge收集器搭配使用,另外一种就是作为CMS 收集器发生失败时的后备预案,在并发收集发生Concurrent Mode Failure时使用。

image-20210814115959607

(Parallel Scavenge收集器架构中本身有PS MarkSweep收集器来进行老年代收集,并非直接调用Serial Old收集器,但是这个PS MarkSweep收集器与Serial Old的实现几乎是一样的,所以在官方的许多资料中都是直接以Serial Old代替PS MarkSweep进行讲解)

4.5.5 Parallel Old收集器(服务端、老年代)

Parallel Old是Parallel Scavenge收集器的老年代版本,支持多线程并发收集,基于标记-整理算法实现。这个收集器是直到JDK 6时才开始提供的,在此之前,新生代的Parallel Scavenge收集器一直处于相当尴尬的状态,原因是如果新生代选择了Parallel Scavenge收集器,老年代除了Serial Old(PS MarkSweep)收集器以外别无选择,其他表现良好的老年代收集器,如CMS无法与它配合工作。由于 老年代Serial Old收集器在服务端应用性能上的“拖累”,使用Parallel Scavenge收集器也未必能在整体上获得吞吐量最大化的效果。同样,由于单线程的老年代收集中无法充分利用服务器多处理器的并行处理能力,在老年代内存空间很大而且硬件规格比较高级的运行环境中,这种组合的总吞吐量甚至不一定比ParNew加CMS的组合来得优秀。

直到Parallel Old收集器出现后,“吞吐量优先”收集器终于有了比较名副其实的搭配组合,在注重吞吐量或者处理器资源较为稀缺的场合,都可以优先考虑Parallel Scavenge加Parallel Old收集器这个组合。

image-20210814120303166

4.5.6 CMS收集器(服务端、老年代)

CMS(Concurrent Mark Sweep)收集器是一种以获取最短回收停顿时间为目标的收集器。

目前很大一部分的Java应用集中在互联网网站或者基于浏览器的B/S系统的服务端上,这类应用通常都会较为关注服务的响应速度,希望系统停顿时间尽可能短,以给用户带来良好的交互体验。CMS收集器就非常符合这类应用的需求。

从名字(包含“Mark Sweep”)上就可以看出CMS收集器是基于标记-清除算法实现的,它的运作 过程相对于前面几种收集器来说要更复杂一些,整个过程分为四个步骤,包括:

1)初始标记(CMS initial mark)

2)并发标记(CMS concurrent mark)

3)重新标记(CMS remark)

4)并发清除(CMS concurrent sweep)

其中初始标记、重新标记这两个步骤仍然需要“Stop The World”。初始标记仅仅只是标记一下GC Roots能直接关联到的对象,速度很快;并发标记阶段就是从GC Roots的直接关联对象开始遍历整个对象图的过程,这个过程耗时较长但是不需要停顿用户线程,可以与垃圾收集线程一起并发运行;而重新标记阶段则是为了修正并发标记期间,因用户程序继续运作而导致标记产生变动的那一部分对象的标记记录,这个阶段的停顿时间通常会比初始标记阶段稍长一些,但也远比并发标记阶段的时间短;最后是并发清除阶段,清理删除掉标记阶段判断的已经死亡的对象,由于不需要移动存活对象,所以这个阶段也是可以与用户线程同时并发的

由于在整个过程中耗时最长的并发标记和并发清除阶段中,垃圾收集器线程都可以与用户线程一起工作,所以从总体上来说,CMS收集器的内存回收过程是与用户线程一起并发执行的。

image-20210814122205098

CMS是一款优秀的收集器,它最主要的优点在名字上已经体现出来:并发收集、低停顿,一些官方公开文档里面也称之为“并发低停顿收集器”(Concurrent Low Pause Collector)。CMS收集器是HotSpot虚拟机追求低停顿的第一次成功尝试,但是它还远达不到完美的程度,至少有以下三个明显的缺点:

  1. CMS收集器对处理器资源非常敏感。事实上,面向并发设计的程序都对处理器资源比较敏感。在并发阶段,它虽然不会导致用户线程停顿,但却会因为占用了一部分线程(或者说处理器的计算能力)而导致应用程序变慢,降低总吞吐量。CMS默认启动的回收线程数是(处理器核心数量 +3)/4,也就是说,如果处理器核心数在四个或以上,并发回收时垃圾收集线程只占用不超过25%的处理器运算资源,并且会随着处理器核心数量的增加而下降。但是当处理器核心数量不足四个时,CMS对用户程序的影响就可能变得很大。如果应用本来的处理器负载就很高,还要分出一半的运算能力去执行收集器线程,就可能导致用户程序的执行速度忽然大幅降低。
  2. 于CMS收集器无法处理“浮动垃圾”(Floating Garbage),有可能出现“Con-current Mode Failure”失败进而导致另一次完全“Stop The World”的Full GC的产生。在CMS的并发标记和并发清理阶段,用户线程是还在继续运行的,程序在运行自然就还会伴随有新的垃圾对象不断产生,但这一部分垃圾对象是出现在标记过程结束以后,CMS无法在当次收集中处理掉它们,只好留待下一次垃圾收集时再清理掉。这一部分垃圾就称为“浮动垃圾”。同样也是由于在垃圾收集阶段用户线程还需要持续运行,那就还需要预留足够内存空间提供给用户线程使用,因此CMS收集器不能像其他收集器那样等待到老年代几乎完全被填满了再进行收集,**必须预留一部分空间供并发收集时的程序运作使用。**在JDK 5的默认设置下,CMS收集器当老年代使用了68%的空间后就会被激活,这是一个偏保守的设置,如果在实际应用中老年代增长并不是太快,可以适当调高参数-XX:CMSInitiatingOccu-pancyFraction的值来提高CMS的触发百分比,降低内存回收频率,获取更好的性能。到了JDK 6时,CMS收集器的启动阈值就已经默认提升至92%。但这又会更容易面临另一种风险:要是CMS运行期间预留的内存无法满足程序分配新对象的需要,就会出现一次“并发失败”(Concurrent Mode Failure),这时候虚拟机将不得不启动后备预案:冻结用户线程的执行,临时启用Serial Old收集器来重新进行老年代的垃圾收集,但这样停顿时间就很长了。所以参数-XX:CMSInitiatingOccupancyFraction设置得太高将会很容易导致大量的并发失败产生,性能反而降低,用户应在生产环境中根据实际应用情况来权衡设置。
  3. CMS是一款基于“标记-清除”算法实现的收集器,这意味着收集结束时会有大量空间碎片产生。空间碎片过多时,将会给大对象分配带来很大麻烦,往往会出现老年代还有很多剩余空间,但就是无法找到足够大的连续空间来分配当前对象,而不得不提前触发一次Full GC的情况。为了解决这个问题, CMS收集器提供了一个-XX:+UseCMS-CompactAtFullCollection开关参数(默认是开启的,此参数从 JDK 9开始废弃),用于在CMS收集器不得不进行Full GC时开启内存碎片的合并整理过程,由于这个内存整理必须移动存活对象,(在Shenandoah和ZGC出现前)是无法并发的。这样空间碎片问题是解 决了,但停顿时间又会变长,因此虚拟机设计者们还提供了另外一个参数-XX:CMSFullGCsBefore- Compaction(此参数从JDK 9开始废弃),这个参数的作用是要求CMS收集器在执行过若干次(数量由参数值决定)不整理空间的Full GC之后,下一次进入Full GC前会先进行碎片整理(默认值为0,表示每次进入Full GC时都进行碎片整理)。
4.5.7 Garbage First收集器(服务端默认垃圾收集器)

Garbage First(简称G1)收集器是垃圾收集器技术发展历史上的里程碑式的成果,它开创了收集器面向局部收集的设计思路和基于Region的内存布局形式。

到了JDK 8 Update 40的时候,G1提供并发类卸载的支持,补全了其计划功能的最后一块拼图。这个版本以后的G1收集器才被Oracle官方称为“全功能的垃圾收集器”(Fully-Featured Garbage Collector)。

G1是一款主要面向服务端应用的垃圾收集器。

JDK 9发布之日,G1宣告取代Parallel Scavenge加Parallel Old组合,成为服务端模式下的默认垃圾收集器,而CMS则沦落至被声明为不推荐使用(Deprecate)的收集器。

作为CMS收集器的替代者和继承人,设计者们希望做出一款能够建立起“停顿时间模型”(PausePrediction Model)的收集器,停顿时间模型的意思是能够支持指定在一个长度为M毫秒的时间片段内,消耗在垃圾收集上的时间大概率不超过N毫秒这样的目标,这几乎已经是实时Java(RTSJ)的中软实时垃圾收集器特征了。

那具体要怎么做才能实现这个目标呢?首先要有一个思想上的改变,在G1收集器出现之前的所有其他收集器,包括CMS在内,垃圾收集的目标范围要么是整个新生代(Minor GC),要么就是整个老年代(Major GC),再要么就是整个Java堆(Full GC)。而G1跳出了这个樊笼,它可以面向堆内存任何部分来组成回收集(Collection Set,一般简称CSet)进行回收,衡量标准不再是它属于哪个分代,而是哪块内存中存放的垃圾数量最多,回收收益最大,这就是G1收集器的Mixed GC模式。

G1开创的基于Region的堆内存布局是它能够实现这个目标的关键。虽然G1也仍是遵循分代收集理论设计的,但其堆内存的布局与其他收集器有非常明显的差异:G1不再坚持固定大小以及固定数量的分代区域划分,而是把连续的Java堆划分为多个大小相等的独立区域(Region),每一个Region都可以根据需要,扮演新生代的Eden空间、Survivor空间,或者老年代空间。收集器能够对扮演不同角色的Region采用不同的策略去处理,这样无论是新创建的对象还是已经存活了一段时间、熬过多次收集的旧对象都能获取很好的收集效果。

Region中还有一类特殊的Humongous区域,专门用来存储大对象。G1认为只要大小超过了一个Region容量一半的对象即可判定为大对象。每个Region的大小可以通过参数-XX:G1HeapRegionSize设定,取值范围为1MB~32MB,且应为2的N次幂。而对于那些超过了整个Region容量的超级大对象, 将会被存放在N个连续的Humongous Region之中,G1的大多数行为都把Humongous Region作为老年代的一部分来进行看待,如图所示:

image-20210816081323050

虽然G1仍然保留新生代和老年代的概念,但新生代和老年代不再是固定的了,它们都是一系列区域(不需要连续)的动态集合。G1收集器之所以能建立可预测的停顿时间模型,是因为它将Region作为单次回收的最小单元,即每次收集到的内存空间都是Region大小的整数倍,这样可以有计划地避免在整个Java堆中进行全区域的垃圾收集。更具体的处理思路是让G1收集器去跟踪各个Region里面的垃圾堆积的“价值”大小,价值即回收所获得的空间大小以及回收所需时间的经验值,然后在后台维护一个优先级列表,每次根据用户设定允许的收集停顿时间(使用参数-XX:MaxGCPauseMillis指定,默认值是200毫秒),优先处理回收价值收益最大的那些Region,这也就是“Garbage First”名字的由来。这种使用Region划分内存空间,以及具有优先级的区域回收方式,保证了G1收集器在有限的时间内获取尽可能高的收集效率。

G1收集器的运作过程大致可划分为以下四个步骤:

  1. 初始标记(Initial Marking):仅仅只是标记一下GC Roots能直接关联到的对象,并且修改TAMS指针的值,让下一阶段用户线程并发运行时,能正确地在可用的Region中分配新对象。这个阶段需要停顿线程,但耗时很短,而且是借用进行Minor GC的时候同步完成的,所以G1收集器在这个阶段实际并没有额外的停顿。
  2. 并发标记(Concurrent Marking):从GC Root开始对堆中对象进行可达性分析,递归扫描整个堆里的对象图,找出要回收的对象,这阶段耗时较长,但可与用户程序并发执行。当对象图扫描完成以后,还要重新处理SATB记录下的在并发时有引用变动的对象。
  3. 最终标记(Final Marking):对用户线程做另一个短暂的暂停,用于处理并发阶段结束后仍遗留下来的最后那少量的SATB记录。 (也是收集器线程并发执行)
  4. 筛选回收(Live Data Counting and Evacuation):负责更新Region的统计数据,对各个Region的回收价值和成本进行排序,根据用户所期望的停顿时间来制定回收计划,可以自由选择任意多个Region构成回收集,然后把决定回收的那一部分Region的存活对象复制(也会进行对象复制)到空的Region中,再清理掉整个旧Region的全部空间。这里的操作涉及存活对象的移动,是必须暂停用户线程,由多条收集器线程并行完成的。

G1收集器除了并发标记外,其余阶段也是要完全暂停用户线程的,换言之,它并非纯粹地追求低延迟,官方给它设定的目标是在延迟可控的情况获得尽可能高的吞吐量,所以才能担当起“全功能收集器”的重任与期望

image-20210816083208980

回收阶段(Evacuation)其实本也有想过设计成与用户程序一起并发执行,但这件事情做起来比较复杂,考虑到G1只是回收一部分Region,停顿时间是用户可控制的(达到用户满意即可 不一定要追求最短),所以并不迫切去实现,而选择把这个特性放到了G1之后出现的低延迟垃圾收集器(即ZGC) 中。另外,还考虑到G1不是仅仅面向低延迟,停顿用户线程能够最大幅度提高垃圾收集效率,为了保证吞吐量所以才选择了完全暂停用户线程的实现方案。

可以由用户指定期望的停顿时间是G1收集器很强大的一个功能,设置不同的期望停顿时间,可使得G1在不同应用场景中取得关注吞吐量和关注延迟之间的最佳平衡。

但如果我们把停顿时间调得非常低,譬如设置为二十毫秒,很可能出现的结果就是由于停顿目标时间太短,导致每次选出来的回收集只占堆内存很小的一部分,收集器收集的速度逐渐跟不上分配器分配的速度,导致垃圾慢慢堆积。很可能一开始收集器还能从空闲的堆内存中获得一些喘息的时间,但应用运行时间一长就不行了,最终占满堆引发Full GC反而降低性能

G1开始,最先进的垃圾收集器的设计导向都不约而同地变为追求能够应付应用的内存分配速率(Allocation Rate),而不追求一次把整个Java堆全部清理干净。这样,应用在分配,同时收集器在收集,只要收集的速度能跟得上对象分配的速度,那一切就能运作得很完美。

与CMS的“标记-清除”算法不同,G1从整体来看是基于“标记-整理”算法实现的收集器,但从局部(两个Region之间)上看又是基于“标记-复制”算法实现,无论如何,这两种算法都意味着G1运作期间不会产生内存空间碎片,垃圾收集完成之后能提供规整的可用内存。这种特性有利于程序长时间运行,在程序为大对象分配内存时不容易因无法找到连续内存空间而提前触发下一次收集

但在用户程序运行过程 中,G1无论是为了垃圾收集产生的内存占用(多10-20percent)还是程序运行时的额外执行负载都要比CMS要高。

内存占用来说,虽然G1和CMS都使用卡表来处理跨代指针,但G1的卡表实现更为复杂,而且堆中每个Region,无论扮演的是新生代还是老年代角色,都必须有一份卡表,这导致G1的记忆集(和其他内存消耗)可能会占整个堆容量的20%乃至更多的内存空间;相比起来CMS的卡表就相当简单, 只有唯一一份,而且只需要处理老年代到新生代的引用,反过来则不需要,由于新生代的对象具有朝生夕灭的不稳定性,引用变化频繁,能省下这个区域的维护开销是很划算的但相反的,这样做的代价就是当CMS发生Old GC时(所有收集器中只有CMS有针对老年代的Old GC),要把整个新生代作为GC Roots来进行扫描。

执行负载的角度上,同样由于两个收集器各自的细节实现特点导致了用户程序运行时的负载会有不同,譬如它们都使用到写屏障,CMS用写后屏障来更新维护卡表;而G1除了使用写后屏障来进行同样的(由于G1的卡表结构复杂,其实是更烦琐的)卡表维护操作外,为了实现原始快照搜索(SATB)算法,还需要使用写前屏障来跟踪并发时的指针变化情况。相比起增量更新算法,原始快照搜索能够减少并发标记和重新标记阶段的消耗,避免CMS那样在最终标记阶段停顿时间过长的缺点, 但是在用户程序运行过程中确实会产生由跟踪引用变化带来的额外负担(增量更新不用跟踪引用变换,因为它直接扫描整个新生代和页表)。由于G1对写屏障的复杂操作要比CMS消耗更多的运算资源,所以CMS的写屏障实现是直接的同步操作,而G1就不得不将其实现为类似于消息队列的结构,把写前屏障和写后屏障中要做的事情都放到队列里,然后再异步处理。

目前在小内存应用上CMS的表现大概率仍然要会优于G1,而在大内存应用上G1则大多能发挥其优势,这个优劣势的Java堆容量平衡点通常在6GB至8GB之间。

4.6 低延迟垃圾收集器

衡量垃圾收集器的三项最重要的指标是:内存占用(Footprint)、吞吐量(Throughput)和延迟(Latency)

在内存占用、吞吐量和延迟这三项指标里,延迟的重要性日益凸显,越发备受关注。其原因是随着计算机硬件的发展、性能的提升,我们越来越能容忍收集器多占用一点点内存存;硬件性能增长,对软件系统的处理能力是有直接助益的,硬件的规格和性能越高,也有助于降低收集器运行时对应用程序的影响,换句话说,吞吐量会更高。但对延迟则不是这样,硬件规格提升,准确地说是内存的扩大,对延迟反而会带来负面的效果(虚拟机要回收完整的1TB的堆内存,毫无疑问要比回收1GB的堆内存耗费更多时间)所以延迟会成为垃圾收集器最被重视的性能指标了。

下图是已接触过的垃圾收集器的停顿状况:

image-20210816104911494

浅色阶段表示必须挂起用户线程,深色表示收集器线程与用户线程是并发工作的。

在CMS和G1之前的全部收集器,其工作的所有步骤都会产生“Stop The World”式的停顿;CMS和G1分别使用增量更新和原始快照(见4.4.6节)技术,实现了标记阶段的并发,不会因管理的堆内存变大,要标记的对象变多而导致停顿时间随之增长。但是对于标记阶段之后的处理,仍未得到妥善解决。CMS使用标记-清除算法,虽然避免了整理阶段收集器带来的停顿,但是清除算法不论如何优化改进,在设计原理上避免不了空间碎片的产生,随着空间碎片不断淤积最终依然逃不过“Stop The World”的命运。G1虽然可以按更小的粒度进行回收,从而抑制整理阶段出现时间过长的停顿,但毕竟也还是要暂停的。

最后的两款收集器,Shenandoah和ZGC,几乎整个工作过程全 部都是并发的,只有初始标记、最终标记这些阶段有短暂的停顿,这部分停顿的时间基本上是固定 的,与堆的容量、堆中对象的数量没有正比例关系。实际上,它们都可以在任意可管理的(譬如现在 ZGC只能管理4TB以内的堆)堆容量下,实现垃圾收集的停顿都不超过十毫秒这种以前听起来是天方 夜谭、匪夷所思的目标。这两款目前仍处于实验状态的收集器,被官方命名为“低延迟垃圾收集器”

4.6.1 Shenandoah收集器

Shenandoah不仅要进行并发的垃圾标记,还要并发地进行对象清理后的整理动作。

Shennandoah算法与G1的不同:

  1. 支持并发的整理算法,G1的筛选回收阶段是可以多线程并行的,但却不能与用户线程并发。
  2. Shenandoah(目前)是默认不使用分代收集的,换言之,不会有专门的新生代Region或者老年代Region的存在。
  3. 摒弃了在G1中耗费大量内存和计算资源去维护的记忆集,改用名为“连接矩阵”(Connection Matrix)的全局数据结构来记录跨Region的引用关系,降低了处理跨代指针时的记忆集维护消耗,也降 低了伪共享问题(见4.4.4节)的发生概率。

连接矩阵可以简单理解为一张二维表格,如果Region N有对象指向Region M,就在表格的N行M列中打上一个标记

Shenandoah工作过程:

  • 初始标记(Initial Marking):与G1一样,首先标记与GC Roots直接关联的对象,这个阶段仍是“Stop The World”的,但停顿时间与堆大小无关,只与GC Roots的数量相关。
  • 并发标记(Concurrent Marking):与G1一样,遍历对象图,标记出全部可达的对象,这个阶段是与用户线程一起并发的,时间长短取决于堆中存活对象的数量以及对象图的结构复杂程度。
  • 最终标记(Final Marking):与G1一样,处理剩余的SATB扫描,并在这个阶段统计出回收价值最高的Region,将这些Region构成一组回收集(Collection Set)。最终标记阶段也会有一小段短暂的停顿。
  • 并发清理(Concurrent Cleanup):这个阶段用于清理那些整个区域内连一个存活对象都没有找到的Region 这里只有一部分region满足条件,最后的并发清理的是全部region 注意区分(这类Region被称为Immediate Garbage Region)。
  • 并发回收(Concurrent Evacuation):并发回收阶段是Shenandoah与之前HotSpot中其他收集器的核心差异。在这个阶段,Shenandoah要把回收集里面的存活对象先复制一份到其他未被使用的Region之中。(并发回收目的是保护存活对象)复制对象这件事情如果将用户线程冻结起来再做那是相当简单的,但如果两者必须要同时并发进行的话,就变得复杂起来了。其困难点是在移动对象的同时,用户线程仍然可能不停对被移动的对象进行读写访问,移动对象是一次性的行为,但移动之后整个内存中所有指向该对象的引用都还是旧对象的地址,这是很难一瞬间全部改变过来的。对于并发回收阶段遇到的这些困难,Shenandoah将会通过读屏障和被称为“Brooks Pointers”的转发指针来解决。并发回收阶段运行的时间长短取决于回收集的大小。
  • 初始引用更新(Initial Update Reference):并发回收阶段复制对象结束后,还需要把堆中所有指 向旧对象的引用修正到复制后的新地址,这个操作称为引用更新。引用更新的初始化阶段实际上并未做什么具体的处理,**设立这个阶段只是为了建立一个线程集合点,确保所有并发回收阶段中进行的收集器线程都已完成分配给它们的对象移动任务而已。**初始引用更新时间很短,会产生一个非常短暂的停顿。
  • 并发引用更新(Concurrent Update Reference):真正开始进行引用更新操作,这个阶段是与用户线程一起并发的,时间长短取决于内存中涉及的引用数量的多少。并发引用更新与并发标记不同,它不再需要沿着对象图来搜索,只需要按照内存物理地址的顺序,线性地搜索出引用类型,把旧值改为新值即可
  • 最终引用更新(Final Update Reference):解决了堆中的引用更新后,还要修正存在于GC Roots中的引用。这个阶段是Shenandoah的最后一次停顿,停顿时间只与GC Roots的数量相关。
  • 并发清理(Concurrent Cleanup):经过并发回收引用更新之后,整个回收集中所有的Region已再无存活对象,这些Region都变成Immediate Garbage Regions了,最后再调用一次并发清理过程来回收这些Region的内存空间,供以后新对象分配使用。

并发回收:

Rodney A.Brooks在论文《Trading Data Space for Reduced Time and Code Space in Real-Time Garbage Collection on Stock Hardware》中提出了使用转发指针(Forwarding Pointer,也常被称为Indirection Pointer)来实现对象移动与用户程序并发的一种解决方案。

要做类似的并发操作,通常是在被移动对象原有的内存上设置保护陷阱(Memory Protection Trap),一旦用户程序访问到归属于旧对象的内存空间就会产生自陷中段,进入预设好的异常处理器中,再由其中的代码逻辑把访问转发到复制后的新对象上。虽然确实能够实现对象移动与用户线程并发,但是如果没有操作系统层面的直接支持,这种方案将导致用户态频繁切换到核心态,代价是非常大的,不能频繁使用。

Brooks提出的新方案不需要用到内存保护陷阱,而是在原有对象布局结构的最前面统一增加一个新的引用字段,在正常不处于并发移动的情况下,该引用指向对象自己

从结构上来看,Brooks提出的转发指针与某些早期Java虚拟机使用过的句柄定位有一些相似之处,两者都是一种间接性的对象访问方式,差别是句柄通常会统一存储在专门的句柄池中,而转发指针是分散存放在每一个对象头前面

转发指针加入后带来的收益自然是当对象拥有了一份新的副本时,只需要修改一处指针的值,即旧对象上转发指针的引用位置,使其指向新对象,便可将所有对该对象的访问转 发到新的副本上。这样只要旧对象的内存仍然存在,未被清理掉,虚拟机内存中所有通过旧引用地址访问的代码便仍然可用,都会被自动转发到新对象上继续工作

Brooks形式的转发指针在设计上决定了它是必然会出现多线程竞争问题的,如果收集器线程用户线程发生的只是并发读取,那无论读到旧对象还是新对象上的字段,返回的结果都应该是一样的,这个场景还可以有一些“偷懒”的处理余地;但如果发生的是并发写入,就一定必须保证写操作只能发生在新复制的对象上,而不是写入旧对象的内存中。

image-20210816122524410

设想以下三件事情并发进行时的场景:

1)收集器线程复制了新的对象副本;

2)用户线程更新对象的某个字段;

3)收集器线程更新转发指针的引用值为新副本地址。

如果不做任何保护措施,让事件2在事件1、事件3之间发生的话,将导致的结果就是用户线程对对象的变更发生在旧对象上,所以这里必须针对转发指针的访问操作采取同步措施,让收集器线程或者用户线程对转发指针的访问只有其中之一能够成功,另外一个必须等待,避免两者交替进行。实际上 Shenandoah收集器是通过比较并交换(Compare And Swap,CAS)操作来保证并发时对象的访问正确性的。

转发指针另一点必须注意的是执行频率的问题,尽管通过对象头上的Brooks Pointer来保证并发时原对象与复制对象的访问一致性,这件事情只从原理上看是不复杂的,但是“对象访问”这四个字的分量是非常重的,对于一门面向对象的编程语言来说,对象的读取、写入,对象的比较,为对象哈希值计算,用对象加锁等,这些操作都属于对象访问的范畴,它们在代码中比比皆是,要覆盖全部对象访问操作,Shenandoah不得不同时设置读、写屏障去拦截。

为了实现Brooks Pointer,Shenandoah在读、写屏障中都加入了额外的转发处理,尤其是使用读屏障的代价,这是比写屏障更大的。代码里对象读取的出现频率要比对象写入的频率高出很多,读屏障数量自然也要比写屏障多得多,所以读屏障的使用必须更加谨慎,不允许任何的重量级操作。Shenandoah是第一款使用到读屏障的收集器,其开发者也意识到读屏障带来的性能开销,在JDK 13中将Shenandoah的内存屏障模型改进为基于引用访问屏障(Load Reference Barrier)的实现,所谓“引用访问屏障”是指内存屏障只拦截对象中数据类型为引用类型的读写操作,而不去管原生数据类型等其他非引用字段的读写,这能够省去大量对原生类型、对象比较、对象加锁等场景中设置内存屏障所带来的消耗

image-20210816123641677

4.6.2 ZGC收集器

ZGC和Shenandoah的目标是高度相似的,都希望在尽可能对吞吐量影响不太大的前提下,实现在任意堆内存大小下都可以把垃圾收集的停顿时间限制在十毫秒以内的低延迟。

ZGC收集器是一款基于Region内存布局的,(暂时)不设分代的,使用了读屏障、染色指针和内存多重映射等技术来实现可并发的标记-整理算法的,以低延迟为首要目标的一款垃圾收集器。

首先从ZGC的内存布局说起。与Shenandoah和G1一样,ZGC也采用基于Region的堆内存布局,但与它们不同的是,ZGC的Region(在一些官方资料中将它称为Page或者ZPage,本章为行文一致继续称为Region)具有动态性——动态创建和销毁,以及动态的区域容量大小。

ZGC的Region可以具有如图3-19所示的大、中、小三类容量:

  • 小型Region(Small Region):容量固定为2MB,用于放置小于256KB的小对象。
  • 中型Region(Medium Region):容量固定为32MB,用于放置大于等于256KB但小于4MB的对象。
  • 大型Region(Large Region):容量不固定,可以动态变化,但必须为2MB的整数倍,用于放置 4MB或以上的大对象。每个大型Region中只会存放一个大对象,这也预示着虽然名字叫作“大型Region”,但它的实际容量完全有可能小于中型Region,最小容量可低至4MB。大型Region在ZGC的实 现中是不会被重分配(重分配是ZGC的一种处理动作,用于复制对象的收集器阶段,稍后会介绍到)的,因为复制一个大对象的代价非常高昂。

image-20210816140833111

接下来是ZGC的核心问题——并发整理算法的实现。Shenandoah使用转发指针和读屏障来实现并发整理(并发回收),ZGC虽然同样用到了读屏障,但用的却是一条与Shenandoah完全不同,更加复杂精巧的解题思路。

ZGC收集器有一个标志性的设计是它采用的染色指针技术

从前,如果我们要在对象上存储一些额外的、只供收集器或者虚拟机本身使用的数据,通常会在对象头中增加额外的存储字段(详见2.3.2节的内容),如对象的哈希码、分代年龄、锁记录等就是这样存储的。这种记录方式在有对象访问的场景下是很自然流畅的,不会有什么额外负担。但如果对象存在被移动过的可能性,即不能保证对象访问能够成功呢?又或者有一些根本就不会去访问对象,但又希望得知该对象的某些信息的应用场景呢?

此前我们就遇到过这样的要求——追踪式收集算法的标记阶段就可能存在只跟指针打交道而不必涉及指针所引用的对象本身的场景。例如对象标记的过程中需要给对象打上三色标记,这些标记本质上就只和对象的引用有关,而与对象本身无关——某个对象只有它的引用关系能决定它存活与否,对象上其他所有的属性都不能够影响它的存活判定结果。HotSpot虚拟机的几种收集器有不同的标记实现方案,有的把标记直接记录在对象头上(如Serial收集器),有的把标记记录在与对象相互独立的数据结构上(如G1、Shenandoah使 用了一种相当于堆内存的1/64大小的,称为BitMap的结构来记录标记信息),而ZGC的染色指针是最直接的、最纯粹的,它直接把标记信息记在引用对象的指针上,这时,与其说可达性分析是遍历对象图来标记对象,还不如说是遍历“引用图”来标记“引用”了。

尽管Linux下64位指针的高18位不能用来寻址,但剩余的46位指针所能支持的64TB内存在今天仍然能够充分满足大型服务器的需要。鉴于此,ZGC的染色指针技术继续盯上了这剩下的46位指针宽度,将其高4位提取出来存储四个标志信息。通过这些标志位,虚拟机可以直接从指针中看到其引用对象的三色标记状态、是否进入了重分配集(即被移动过)、是否只能通过finalize()方法才能被访问到。如图所示:当然,由于这些标志位进一步压缩了原本就只有46位的地址空间,也直接导致ZGC能够管理的内存不可以超过4TB(2的42次幂)

image-20210816141707193

虽然染色指针有4TB的内存限制,不能支持32位平台不能支持压缩指针(-XX: +UseCompressedOops)等诸多约束,但它带来的收益也是非常可观的:

  • 染色指针可以使得一旦某个Region的存活对象被移走之后,这个Region立即就能够被释放和重用掉,而不必等待整个堆中所有指向该Region的引用都被修正后才能清理。这点相比起Shenandoah是一个颇大的优势,使得理论上只要还有一个空闲Region,ZGC就能完成收集(因为可用的Region能随着垃圾回收一直产生出来,用于存放复制后的存活对象,不需要等到引用全部更新完毕),而Shenandoah需要等到引用更新阶段结束以后才能释放回收集中的Region,这意味着堆中几乎所有对象都存活的极端情况,需要1∶1复制对象到新Region的话,就必须要有一半的空闲Region来完成收集。(至于为什么染色指针能够导致这样的结果,将在后续解释其“自愈”特性的时候进行解释。 )
  • 染色指针可以大幅减少在垃圾收集过程中内存屏障的使用数量,设置内存屏障,尤其是写屏障的目的通常是为了记录对象引用的变动情况,如果将这些信息直接维护在指针中,显然就可以省去一些专门的记录操作。实际上,到目前为止ZGC都并未使用任何写屏障,只使用了读屏障(一部分是染色指针的功劳,一部分是ZGC现在还不支持分代收集,天然就没有跨代引用的问题)。内存屏障对程序运行时性能的损耗在前面章节中已经讲解过,能够省去一部分的内存屏障,显然对程序运行效率是大有裨益的,所以ZGC对吞吐量的影响也相对较低。
  • 染色指针可以作为一种可扩展的存储结构用来记录更多与对象标记、重定位过程相关的数据,以便日后进一步提高性能。现在Linux下的64位指针还有前18位并未使用,它们虽然不能用来寻址,却可以通过其他手段用于信息记录。如果开发了这18位,既可以腾出已用的4个标志位,将ZGC可支持的最大堆内存从4TB拓展到64TB,也可以利用其余位置再存储更多的标志,譬如存储一些追踪信息来让垃圾收集器在移动对象时能将低频次使用的对象移动到不常访问的内存区域

要顺利应用染色指针有一个必须解决的前置问题:Java虚拟机作为一个普普通通的进程,这样随意重新定义内存中某些指针的其中几位,操作系统是否支持?处理器是否支持?这是很现实的 问题,无论中间过程如何,程序代码最终都要转换为机器指令流交付给处理器去执行,处理器可不会 管指令流中的指针哪部分存的是标志位,哪部分才是真正的寻址地址,只会把整个指针都视作一个内存地址来对待。

ZGC使用了多重映射(Multi-Mapping)将多个不同的虚拟内存地址映射到同一个物理内存地址上,这是一种多对一映射,意味着ZGC在虚拟内存中看到的地址空间要比实际的堆内存容量来得更大。把染色指针中的标志位看作是地址的分段符,那只要将这些不同的地址段都映射到同一个物理内存空间,经过多重映射转换后,就可以使用染色指针正常进行寻址了

多重映射下的寻址:

image-20210816143151725

ZGC的运作过程大致可划分为以下四个大的阶段。全部四个阶段都是可以并发执行的,仅是两个阶段中间会存在短暂的停顿小阶段,这些小阶段, 譬如初始化GC Root直接关联对象的Mark Start,与之前G1和Shenandoah的Initial Mark阶段并没有什么差异

image-20210816143526613

  • 并发标记(Concurrent Mark):与G1、Shenandoah一样,并发标记是遍历对象图做可达性分析的阶段,前后也要经过类似于G1、Shenandoah的初始标记、最终标记(尽管ZGC中的名字不叫这些)的短暂停顿,而且这些停顿阶段所做的事情在目标上也是相类似的。与G1、Shenandoah不同的是,ZGC的标记是在指针上而不是在对象上进行的,标记阶段会更新染色指针中的Marked 0、Marked 1标志位。
  • 并发预备重分配(Concurrent Prepare for Relocate):这个阶段需要根据特定的查询条件统计得出本次收集过程要清理哪些Region,将这些Region组成重分配集(Relocation Set)。重分配集与G1收集器的回收集(Collection Set)还是有区别的,ZGC划分Region的目的并非为了像G1那样做收益优先的增量回收。相反,ZGC每次回收都会扫描所有的Region,用范围更大的扫描成本换取省去G1中记忆集(记住页表中的跨代引用)的维护成本。因此,ZGC的重分配集只是决定了里面的存活对象会被重新复制到其他的Region中,里面的Region会被释放,而并不能说回收行为就只是针对这个集合里面的Region进行,因为标记过程是针对全堆的。此外,在JDK 12的ZGC中开始支持的类卸载以及弱引用的处理,也是在这个阶段中完成的。
  • 并发重分配(Concurrent Relocate):重分配是ZGC执行过程中的核心阶段,这个过程要把重分配集中的存活对象复制到新的Region上,并为重分配集中的每个Region维护一个转发表(Forward Table),记录从旧对象到新对象的转向关系。得益于染色指针的支持,ZGC收集器能仅从引用上就明确得知一个对象是否处于重分配集之中(指针的前四位),如果用户线程此时并发访问了位于重分配集中的对象,这次访问将会被预置的内存屏障所截获,然后立即根据Region上的转发表记录将访问转发到新复制的对象上,并同时修正更新该引用的值,使其直接指向新对象,ZGC将这种行为称为指针的“自愈”(Self- Healing)能力。这样做的好处是只有第一次访问旧对象会陷入转发,也就是只慢一次,对比Shenandoah的Brooks转发指针,那是每次对象访问都必须付出的固定开销,简单地说就是每次都慢,因此ZGC对用户程序的运行时负载要比Shenandoah来得更低一些。还有另外一个直接的好处是由于染色指针的存在,一旦重分配集中某个Region的存活对象都复制完毕后,这个Region就可以立即释放用于新对象的分配(但是转发表还得留着不能释放掉),哪怕堆中还有很多指向这个对象的未更新指针也没有关系,这些旧指针一旦被使用,它们都是可以自愈的。
  • 并发重映射(Concurrent Remap):重映射所做的就是修正整个堆中指向重分配集中旧对象的所有引用,这一点从目标角度看是与Shenandoah并发引用更新阶段一样的,但是ZGC的并发重映射并不是一个必须要“迫切”去完成的任务,因为前面说过,即使是旧引用,它也是可以自愈的,最多只是第一次使用时多一次转发和修正操作。重映射清理这些旧引用的主要目的是为了不变慢(还有清理结束后可以释放转发表这样的附带收益),所以说这并不是很“迫切”。因此,ZGC很巧妙地把并发重映射阶段要做的工作,合并到了下一次垃圾收集循环中的并发标记阶段里去完成,反正它们都是要遍历所有对象的,这样合并就节省了一次遍历对象图的开销。一旦所有指针都被修正之后,原来记录新旧对象关系的转发表就可以释放掉了。

相比G1、Shenandoah等先进的垃圾收集器,ZGC在实现细节上做了一些不同的权衡选择,譬如G1需要通过写屏障来维护记忆集,才能处理跨代指针,得以实现Region的增量回收。记忆集要占用大量的内存空间,写屏障也对正常程序运行造成额外负担,这些都是权衡选择的代价。ZGC就完全没有使用记忆集,它甚至连分代都没有,连像CMS中那样只记录新生代和老年代间引用的卡表也不需要,因而完全没有用到写屏障,所以给用户线程带来的运行负担也要小得多

ZGC的这种选择也限制了它能承受的对象分配速率不会太高,可以想象以下场景来理解ZGC的这个劣势:ZGC准备要对一个很大的堆做一次完整的并发收集,假设其全过程要持续十分钟以上,在这段时间里面,由于应用的对象分配速率很高,将创造大量的新对象,这些新对象很难进入当次收集的标记范围,通常就只能全部当作存活对象来看待——尽管其中绝大部分对象都是朝生夕灭的,这就产生了大 量的浮动垃圾。如果这种高速分配持续维持的话,每一次完整的并发收集周期都会很长,回收到的内 存空间持续小于期间并发产生的浮动垃圾所占的空间,堆中剩余可腾挪的空间就越来越小了。目前唯一的办法就是尽可能地增加堆容量大小,获得更多喘息的时间。但是若要从根本上提升ZGC能够应对 的对象分配速率,还是需要引入分代收集,让新生对象都在一个专门的区域中创建,然后专门针对这个区域进行更频繁、更快的收集。

ZGC吞吐量测试:

image-20210817084935762

ZGC停顿时间测试:(而在ZGC的强项停顿时间测试上,它就毫不留情地与Parallel Scavenge、G1拉开了两个数量级的差距。不论是平均停顿,还是95%停顿、99%停顿、99.9%停顿,抑或是最大停顿时间,ZGC均能毫不费劲地控制在十毫秒之内)

image-20210817085048584

4.7 垃圾收集器参数总结

image-20210817085642091

image-20210817085706141

4.8 实战:内存分配与回收策略

4.8.1 对象优先在Eden区分配

大多数情况下,对象在新生代Eden区中分配。当Eden区没有足够空间进行分配时,虚拟机将发起一次Minor GC。

HotSpot虚拟机提供了-XX:+PrintGCDetails这个收集器日志参数,告诉虚拟机在发生垃圾收集行为时打印内存回收日志,并且在进程退出的时候输出当前的内存各区域分配情况。

目前IDEA中的默认收集器是 ParallelScavenge+ParallelOld;需要根据需求对其进行调整。以下代码运行在客户端的Serial+SerialOld的收集器组合下。运行时JVM参数如下:

-XX:+UseSerialGC -Xms20M -Xmx20M -Xmn10M -XX:+PrintGCDetails -XX:SurvivorRatio=8 
private static final int _1MB = 1024 * 1024; 
/*** VM参数:-verbose:gc -Xms20M -Xmx20M -Xmn10M -XX:+PrintGCDetails -XX:SurvivorRatio=8 */ 
public static void testAllocation() { 
    byte[] allocation1, allocation2, allocation3,allocation4; 
    allocation1 = new byte[2 * _1MB]; 
    allocation2 = new byte[2 * _1MB]; 
    allocation3 = new byte[2 * _1MB]; 
    allocation4 = new byte[4 * _1MB]; // 出现一次Minor GC }

日志信息如下:

[GC (Allocation Failure) [DefNew: 6301K->721K(9216K), 0.0046641 secs] 6301K->4817K(19456K), 0.0047340 secs] [Times: user=0.00 sys=0.00, real=0.00 secs] 
Heap
 def new generation   total 9216K, used 7189K [0x00000000fec00000, 0x00000000ff600000, 0x00000000ff600000)
  eden space 8192K,  78% used [0x00000000fec00000, 0x00000000ff250e70, 0x00000000ff400000)
  from space 1024K,  70% used [0x00000000ff500000, 0x00000000ff5b46e0, 0x00000000ff600000)
  to   space 1024K,   0% used [0x00000000ff400000, 0x00000000ff400000, 0x00000000ff500000)
 tenured generation   total 10240K, used 4096K [0x00000000ff600000, 0x0000000100000000, 0x0000000100000000)
   the space 10240K,  40% used [0x00000000ff600000, 0x00000000ffa00020, 0x00000000ffa00200, 0x0000000100000000)
 Metaspace       used 3376K, capacity 4496K, committed 4864K, reserved 1056768K
  class space    used 367K, capacity 388K, committed 512K, reserved 1048576K

GC日志各字段含义:

新生代GC xx代表不同的收集器进行的GC

GC (Allocation Failure) [PSYoungGen: 524800K①->12561K②(611840K③)] 524800K④->12649K⑤(2010112K⑥), 0.0345720 secs⑦] [Times: user=0.05⑧ sys=0.01⑨, real=0.03 secs⑩

①:xxGC前新生代的内存占用量;
②:xxGC后新生代的内存占用量;
③:新生代总内存大小;
④:xxGC前JVM堆内存占用量;
⑤:xxGC后JVM堆内存使用量;
⑥:JVM堆内存总大小;
⑦:xxGC耗时
⑧:xxGC用户耗时;
⑨:xxGC系统耗时;
⑩:xxGC实际耗时;

执行上述代码后,发现对象首先是在Eden区分配,当超过Eden区的大约3/4之后就会显示出分配失败,并且进行Minor GC 将部分区域上的对象划分到老年代中。具体将哪部分呢?多次实验得出结论是:从最后一个满足分配在Eden区的对象从后往前的内容全部搬到老年代,然后这个对象之后的对象继续放在Eden区。

byte[] allocation1, allocation2, allocation3, allocation4;
        allocation1 = new byte[4 * _1MB];
        allocation2 = new byte[1 * _1MB];
        allocation3 = new byte[1 * _1MB];
        allocation4 = new byte[1 * _1MB]; // 出现一次Minor GC

其对应的日志文件内容为:可以看到它将4+1搬到了old代 其他的继续放到Eden区 因为4+1+1已经超过了新生代的3/4(但注意GC前仍然是放在新生代中的7325K 约为7MB 最后发现放最后1MB放不下了 就开始GC将前3/4的内容搬到老年代去,上面那串代码也是同理搬运新生代的3/4(不包括3/4这个点 即<3/4)过去老年代存储)

[GC (Allocation Failure) [DefNew: 7325K->703K(9216K), 0.0059848 secs] 7325K->5823K(19456K), 0.0061094 secs] [Times: user=0.02 sys=0.00, real=0.01 secs] 
Heap
 def new generation   total 9216K, used 3075K [0x00000000fec00000, 0x00000000ff600000, 0x00000000ff600000)
  eden space 8192K,  28% used [0x00000000fec00000, 0x00000000fee510a8, 0x00000000ff400000)
  from space 1024K,  68% used [0x00000000ff500000, 0x00000000ff5afc40, 0x00000000ff600000)
  to   space 1024K,   0% used [0x00000000ff400000, 0x00000000ff400000, 0x00000000ff500000)
 tenured generation   total 10240K, used 5120K [0x00000000ff600000, 0x0000000100000000, 0x0000000100000000)
   the space 10240K,  50% used [0x00000000ff600000, 0x00000000ffb00020, 0x00000000ffb00200, 0x0000000100000000)
 Metaspace       used 3407K, capacity 4496K, committed 4864K, reserved 1056768K
  class space    used 369K, capacity 388K, committed 512K, reserved 1048576K

4.8.2 大对象直接进入老年代

大对象就是指需要大量连续内存空间的Java对象,最典型的大对象便是那种很长的字符串,或者元素数量很庞大的数组,本节例子中的byte[]数组就是典型的大对象。

在Java虚拟机中要避免大对象的原因是,在分配空间时,它容易导致内存明明还有不少空间时就提前触发垃圾收集,以获取足够的连续空间才能安置好它们,而当复制对象时,大对象就意味着高额的内存复制开销。HotSpot虚拟机提供了-XX:PretenureSizeThreshold 参数,指定大于该设置值的对象直接在老年代分配,这样做的目的就是避免在Eden区及两个Survivor区之间来回复制,产生大量的内存复制操作。

JVM参数为:

-XX:+UseSerialGC

-Xms20M

-Xmx20M

-Xmn10M

-XX:+PrintGCDetails

-XX:SurvivorRatio=8

-XX:PretenureSizeThreshold=3145728

代码如下:

    /*** VM参数:-verbose:gc -Xms20M -Xmx20M -Xmn10M -XX:+PrintGCDetails -XX:SurvivorRatio=8 * -XX:PretenureSizeThreshold=3145728 */
    public static void testPretenureSizeThreshold() {
        byte[] allocation;
        allocation = new byte[4 * _1MB]; //直接分配在老年代中 }
    }

JVM日志信息如下:

Heap
 def new generation   total 9216K, used 2369K [0x00000000fec00000, 0x00000000ff600000, 0x00000000ff600000)
  eden space 8192K,  28% used [0x00000000fec00000, 0x00000000fee50578, 0x00000000ff400000)
  from space 1024K,   0% used [0x00000000ff400000, 0x00000000ff400000, 0x00000000ff500000)
  to   space 1024K,   0% used [0x00000000ff500000, 0x00000000ff500000, 0x00000000ff600000)
 tenured generation   total 10240K, used 4096K [0x00000000ff600000, 0x0000000100000000, 0x0000000100000000)
   the space 10240K,  40% used [0x00000000ff600000, 0x00000000ffa00010, 0x00000000ffa00200, 0x0000000100000000)
 Metaspace       used 3387K, capacity 4496K, committed 4864K, reserved 1056768K
  class space    used 368K, capacity 388K, committed 512K, reserved 1048576K

可以看到他直接4m大对象将分配到了老年代,并且没有进行GC。若是不加-XX:PretenureSizeThreshold=3145728参数 按照之前案例分析会直接加到新生代中。

4.8.3 长期存活的对象将进入老年代

HotSpot虚拟机中多数收集器都采用了分代收集来管理堆内存,那内存回收时就必须能决策哪些存活对象应当放在新生代,哪些存活对象放在老年代中。为做到这点,虚拟机给每个对象定义了一个对象年龄(Age)计数器,存储在对象头中。对象通常在Eden区里诞生,如果经过第一次Minor GC后仍然存活,并且能被Survivor容纳的话,该对象会被移动到Survivor空间中,并且将其对象年龄设为1岁。对象在Survivor区中每熬过一次Minor GC意味着必须是能放到Survivor区中的对象才会通过这个age来放到老年代!),年龄就增加1岁,当它的年龄增加到一定程度(默认为15),就会被晋升到老年代中。对象晋升老年代的年龄阈值,可以通过参数-XX:MaxTenuringThreshold设置。

程序代码:

byte[] allocation1, allocation2, allocation3;
        allocation1 = new byte[_1MB / 4];
        // 什么时候进入老年代决定于XX:MaxTenuring- Threshold设置
        allocation2 = new byte[4 * _1MB];
        allocation3 = new byte[4 * _1MB];
        allocation3 = null;
        allocation3 = new byte[4 * _1MB];

设置年龄为1的时候:

JVM参数如下:

-XX:+UseSerialGC

-Xms20M

-Xmx20M

-Xmn10M

-XX:+PrintGCDetails

-XX:SurvivorRatio=8

-XX:+PrintTenuringDistribution

-XX:MaxTenuringThreshold=1

JVM日志如下:

[GC (Allocation Failure) [DefNew
Desired survivor size 524288 bytes, new threshold 1 (max 1)
- age   1:     975536 bytes,     975536 total
: 6389K->952K(9216K), 0.0044802 secs] 6389K->5048K(19456K), 0.0045711 secs] [Times: user=0.00 sys=0.00, real=0.00 secs] 
[GC (Allocation Failure) [DefNew
Desired survivor size 524288 bytes, new threshold 1 (max 1)
- age   1:        128 bytes,        128 total
: 5130K->0K(9216K), 0.0019924 secs] 9226K->5044K(19456K), 0.0020275 secs] [Times: user=0.00 sys=0.00, real=0.00 secs] 
Heap
 def new generation   total 9216K, used 4315K [0x00000000fec00000, 0x00000000ff600000, 0x00000000ff600000)
  eden space 8192K,  52% used [0x00000000fec00000, 0x00000000ff036ef0, 0x00000000ff400000)
  from space 1024K,   0% used [0x00000000ff400000, 0x00000000ff400080, 0x00000000ff500000)
  to   space 1024K,   0% used [0x00000000ff500000, 0x00000000ff500000, 0x00000000ff600000)
 tenured generation   total 10240K, used 5044K [0x00000000ff600000, 0x0000000100000000, 0x0000000100000000)
   the space 10240K,  49% used [0x00000000ff600000, 0x00000000ffaed2a8, 0x00000000ffaed400, 0x0000000100000000)
 Metaspace       used 3337K, capacity 4496K, committed 4864K, reserved 1056768K
  class space    used 363K, capacity 388K, committed 512K, reserved 1048576K

同理设置年龄为15时,JVM日志如下:

[GC (Allocation Failure) [DefNew
Desired survivor size 524288 bytes, new threshold 1 (max 15)
- age   1:     978704 bytes,     978704 total
: 6557K->955K(9216K), 0.0048210 secs] 6557K->5051K(19456K), 0.0048677 secs] [Times: user=0.00 sys=0.00, real=0.00 secs] 
[GC (Allocation Failure) [DefNew
Desired survivor size 524288 bytes, new threshold 15 (max 15)
- age   1:       1256 bytes,       1256 total
: 5135K->1K(9216K), 0.0015826 secs] 9231K->5048K(19456K), 0.0016077 secs] [Times: user=0.00 sys=0.00, real=0.00 secs] 
Heap
 def new generation   total 9216K, used 4316K [0x00000000fec00000, 0x00000000ff600000, 0x00000000ff600000)
  eden space 8192K,  52% used [0x00000000fec00000, 0x00000000ff036c28, 0x00000000ff400000)
  from space 1024K,   0% used [0x00000000ff400000, 0x00000000ff4004e8, 0x00000000ff500000)
  to   space 1024K,   0% used [0x00000000ff500000, 0x00000000ff500000, 0x00000000ff600000)
 tenured generation   total 10240K, used 5047K [0x00000000ff600000, 0x0000000100000000, 0x0000000100000000)
   the space 10240K,  49% used [0x00000000ff600000, 0x00000000ffaedf08, 0x00000000ffaee000, 0x0000000100000000)
 Metaspace       used 3355K, capacity 4496K, committed 4864K, reserved 1056768K
  class space    used 367K, capacity 388K, committed 512K, reserved 1048576K

分析可知,当256kb的数据存放到survivor区域中,且放入两个4MB大小的对象时会导致GC,当设置为15时Survivor区不会将自己复制到老年代中,因为一次GC将Eden区中的4MB对象存放到老年代中,Eden区中的空间就还能用了,AGE没有超过阈值,不会移动到老年代中,也就不会产生GC了。所以新生代中还是4MB+256KB.

4.8.4 动态对象年龄判定

为了能更好地适应不同程序的内存状况,HotSpot虚拟机并不是永远要求对象的年龄必须达到-XX:MaxTenuringThreshold才能晋升老年代,如果在Survivor空间中相同年龄所有对象大小的总和大于 Survivor空间的一半,年龄大于或等于该年龄的对象就可以直接进入老年代,无须等到-XX:MaxTenuringThreshold中要求的年龄。

代码如下:

        byte[] allocation1, allocation2, allocation3, allocation4;
        allocation1 = new byte[_1MB / 4];
        // allocation1+allocation2大于survivo空间一半
         allocation2 = new byte[_1MB / 4];
         allocation3 = new byte[4 * _1MB];
         allocation4 = new byte[4 * _1MB];
         allocation4 = null;
         allocation4 = new byte[4 * _1MB];

JVM日志:

[GC (Allocation Failure) [DefNew
Desired survivor size 524288 bytes, new threshold 1 (max 15)
- age   1:    1048576 bytes,    1048576 total
: 6813K->1024K(9216K), 0.0063270 secs] 6813K->5311K(19456K), 0.0063902 secs] [Times: user=0.01 sys=0.00, real=0.01 secs] 
[GC (Allocation Failure) [DefNew
Desired survivor size 524288 bytes, new threshold 15 (max 15)
- age   1:        800 bytes,        800 total
: 5203K->0K(9216K), 0.0292754 secs] 9491K->5312K(19456K), 0.0293368 secs] [Times: user=0.00 sys=0.00, real=0.03 secs] 
Heap
 def new generation   total 9216K, used 4316K [0x00000000fec00000, 0x00000000ff600000, 0x00000000ff600000)
  eden space 8192K,  52% used [0x00000000fec00000, 0x00000000ff036ec8, 0x00000000ff400000)
  from space 1024K,   0% used [0x00000000ff400000, 0x00000000ff400320, 0x00000000ff500000)
  to   space 1024K,   0% used [0x00000000ff500000, 0x00000000ff500000, 0x00000000ff600000)
 tenured generation   total 10240K, used 5311K [0x00000000ff600000, 0x0000000100000000, 0x0000000100000000)
   the space 10240K,  51% used [0x00000000ff600000, 0x00000000ffb2fe98, 0x00000000ffb30000, 0x0000000100000000)
 Metaspace       used 3422K, capacity 4496K, committed 4864K, reserved 1056768K
  class space    used 371K, capacity 388K, committed 512K, reserved 1048576K

4.8.5 空间分配担保

在发生MinorGc之前,虚拟机必须先检查老年代最大可用的连续空间是否大于新生代所有对象总空间,如果这个条件成立,那这一次Minor GC可以确保是安全的。如果不成立,则虚拟机会先查看- XX:HandlePromotionFailure参数的设置值是否允许担保失败(Handle Promotion Failure);如果允许,那会继续检查老年代最大可用的连续空间是否大于历次晋升到老年代对象的平均大小,如果大于,将尝试进行一次Minor GC,尽管这次Minor GC是有风险的;如果小于,或者-XX: HandlePromotionFailure设置不允许冒险,那这时就要改为进行一次Full GC。

(新生代使用复制收集算法,但为了内存利用率,只使用其中一个Survivor空间来作为轮换备份,因此当出现大量对象在Minor GC后仍然存活的情况——最极端的情况就是内存回收后新生代中所有对象都存活,需要老年代进行分配担保,把Survivor无法容纳的对象直接送入老年代,)

取历史平均值来比较其实仍然是一种赌概率的解决办法,也就是说假如某次Minor GC存活后的对象突增,远远高于历史平均值的话,依然会导致担保失败。如果出现了担保失败,那就只好老老实实地重新发起一次Full GC,这样停顿时间就很长了。虽然担保失败时绕的圈子是最大的,但通常情况下都还是会将-XX:HandlePromotionFailure开关打开,避免Full GC过于频繁。

private static final int _1MB = 1024 * 1024; 
/*** VM参数:-Xms20M -Xmx20M -Xmn10M -XX:+PrintGCDetails -XX:SurvivorRatio=8 -XX:-Handle- PromotionFailure */ @SuppressWarnings("unused") public static void testHandlePromotion() { 
byte[] allocation1, allocation2, allocation3, allocation4, allocation5, alloca-tion6, allocation7; 

allocation1 = new byte[2 * _1MB]; 
allocation2 = new byte[2 * _1MB]; 
allocation3 = new byte[2 * _1MB]; 
allocation1 = null; 
allocation4 = new byte[2 * _1MB]; 
allocation5 = new byte[2 * _1MB]; 
allocation6 = new byte[2 * _1MB]; 
allocation4 = null; allocation5 = null; allocation6 = null; 
allocation7 = new byte[2 * _1MB]; }

JVM日志报告:

以-XX:HandlePromotionFailure=false参数来运行的结果:

[GC [DefNew: 6651K->148K(9216K), 0.0078936 secs] 6651K->4244K(19456K), 0.0079192 secs] [Times: user=0.00 sys=0.02, real=0.02 secs]
[GC [DefNew: 6378K->6378K(9216K), 0.0000206 secs][Tenured: 4096K->4244K(10240K), 0.0042901 secs] 10474K

以-XX:HandlePromotionFailure=true参数来运行的结果:

[GC [DefNew: 6651K->148K(9216K), 0.0054913 secs] 6651K->4244K(19456K), 0.0055327 secs] [Times: user=0.00 sys=0.00, real=0.00 secs] [GC [DefNew: 6378K->148K(9216K), 0.0006584 secs] 10474K->4244K(19456K), 0.0006857 secs] [Times: user=0.0

HotSpot中空间分配检查的代码片段 :

bool TenuredGeneration::promotion_attempt_is_safe(size_t max_promotion_in_bytes) const { 
// 老年代最大可用的连续空间 
size_t available = max_contiguous_available(); 
// 每次晋升到老年代的平均大小 
    size_t av_promo = (size_t)gc_stats()->avg_promoted()->padded_average(); 
// 老年代可用空间是否大于平均晋升大小,或者老年代可用空间是否大于当此GC时新生代所有对象容量 
bool res = (available >= av_promo) || (available >= max_promotion_in_bytes); return res; }

5 虚拟机性能监控、故障处理工具

5.1 基础故障处理工具

5.1.1 jps:虚拟机进程状况工具

可以列出正在运行的虚拟机进程,并显示虚拟机执行主类(Main Class,main()函数所在的类)名称以及这些进程的本地虚拟机唯一ID(LVMID,Local Virtual Machine Identifier)。虽然功能比较单一,但它绝对是使用频率最高的JDK命令行工具,因为其他的JDK工具大多需要输入它查询到的LVMID来确定要监控的是哪一个虚拟机进程。对于本地虚拟机进程来说,LVMID与操作系统的进程ID(PID,Process Identifier)是一致的,使用Windows的任务管理器或者UNIX的ps命令也可以查询到虚拟机进程的LVMID,但如果同时启动了多个虚拟机进程,无法根据进程名称定位时,那就必须依赖jps命令显示主类的功能才能区分了。

JPS命令格式:

jps [options] [hostid]
jps -l 
2388 D:\Develop\glassfish\bin\..\modules\admin-cli.jar 2764 com.sun.enterprise.glassfish.bootstrap.ASMain 
3788 sun.tools.jps.Jps

jps还可以通过RMI协议查询开启了RMI服务的远程虚拟机进程状态,参数hostid为RMI注册表中注册的主机名。

image-20210817155938889

5.1.2 jstat: 虚拟机统计信息监视工具

jstat(JVM Statistics Monitoring Tool)是用于监视虚拟机各种运行状态信息的命令行工具。它可以显示本地或者远程虚拟机进程中的类加载、内存、垃圾收集、即时编译等运行时数据,在没有 GUI图形界面、只提供了纯文本控制台环境的服务器上,它将是运行期定位虚拟机性能问题的常用工具。

jstat [ option vmid [interval[s|ms] [count]] ]

对于命令格式中的VMID与LVMID需要特别说明一下:如果是本地虚拟机进程,VMID与LVMID是一致的;如果是远程虚拟机进程,那VMID的格式应当是:

[protocol:][//]lvmid[@hostname[:port]/servername]

参数interval和count代表查询间隔和次数,如果省略这2个参数,说明只查询一次。假设需要每250毫秒查询一次进程2764垃圾收集状况,一共查询20次,那命令应当是:

jstat -gc 2764 250 20

选项option代表用户希望查询的虚拟机信息,主要分为三类:类加载、垃圾收集、运行期编译状况。

image-20210817164544898

jstat执行样例:

image-20210817192954462

查询结果表明:这台服务器的新生代Eden区(E,表示Eden)使用了6.2%的空间,2个Survivor区(S0、S1,表示Survivor0、Survivor1)里面都是空的,老年代(O,表示Old)和永久代(P,表示Permanent)则分别使用了41.42%和47.20%的空间。程序运行以来共发生Minor GC(YGC,表示YoungGC)16次,总耗时0.105秒;发生Full GC(FGC,表示Full GC)3次,总耗时(FGCT,表示Full GC Time)为0.472秒;所有GC总耗时(GCT,表示GC Time)为0.577秒。

5.1.3 jinfo:java配置信息工具

jinfo(Configuration Info for Java)的作用是实时查看和调整虚拟机各项参数。使用jps命令的-v参数可以查看虚拟机启动时显式指定的参数列表,但如果想知道未被显式指定的参数的系统默认值,除了去找资料外,就只能使用jinfo的-flag选项进行查询了(如果只限于JDK 6或以上版本的话,使用java- XX:+PrintFlagsFinal查看参数默认值也是一个很好的选择)。jinfo还可以使用-sysprops选项把虚拟机进程的System.getProperties()的内容打印出来。

jinfo 命令格式:

jinfo [ option ] pid

样例:

jinfo -flag CMSInitiatingOccupancyFraction 1444 
-XX:CMSInitiatingOccupancyFraction=85
5.1.4 jmap:Java内存映射工具

6 调优案例分析与实战

考虑到虚拟机的故障处理与调优主要面向各类服务端应用,而大多数Java程序员较少有机会直接接触生产环境的服务器。

6.1 案例分析

6.1.1 大内存硬件上程序部署策略

管理员启用了一个虚拟机实例,使用-Xmx和-Xms参数将Java堆大小固定在12GB。使用一段时间后发现服务器的运行效果十分不 理想,网站经常不定期出现长时间失去响应。监控服务器运行状况后发现网站失去响应是由垃圾收集停顿所导致的,在该系统软硬件条件下,HotSpot虚拟机是以服务端模式运行,默认使用的是吞吐量优先收集器,回收12GB的Java堆,一次Full GC的停顿时间就高达14秒。由于程序设计的原因,访问文档时会把文档从磁盘提取到内存中,导致内存中出现很多由文档序列化产生的大对象,这些大对象大多在分配时就直接进入了老年代,没有在Minor GC中被清理掉。这种情况下即使有12GB的堆,内存也很快会被消耗殆尽,由此导致每隔几分钟出现十几秒的停顿,分析此案例的情况,程序代码问题这里不延伸讨论,程序部署上的主要问题显然是过大的堆内存 进行回收时带来的长时间的停顿。经调查,更早之前的硬件使用的是32位操作系统,给HotSpot虚拟机只分配了1.5GB的堆内存,当时用户确实感觉到使用网站比较缓慢,但还不至于发生长达十几秒的明显停顿,后来将硬件升级到64位系统、16GB内存希望能提升程序效能,却反而出现了停顿问题,尝试过将Java堆分配的内存重新缩小到1.5GB或者2GB,这样的确可以避免长时间停顿,但是在硬件上的投 资就显得非常浪费。

每一款Java虚拟机中的每一款垃圾收集器都有自己的应用目标与最适合的应用场景。目前单体应用在较大内存的硬件上主要的部署方式有两种:

1)通过一个单独的Java虚拟机实例来管理大量的Java堆内存。

2)同时使用若干个Java虚拟机,建立逻辑集群来利用硬件资源。

对于用户交互性强、对停顿时间敏感、内存又较大的系统,并不是一定要使用Shenandoah、ZGC这些明确以控制延迟为目标的垃圾收集器才能解决问题(当然不可否认,如果情况允许的话,这是最值得考虑的方案),使用Parallel Scavenge/Old收集器,并且给Java虚拟机分配较大的堆内存也是有很多运行得很成功的案例的,但前提是必须把应用的Full GC 频率控制得足够低,至少要低到不会在用户使用过程中发生,譬如十几个小时乃至一整天都不出现一次Full GC,这样可以通过在深夜执行定时任务的方式触发Full GC甚至是自动重启应用服务器来保持内存可用空间在一个稳定的水平。

控制Full GC频率的关键是老年代的相对稳定,这主要取决于应用中绝大多数对象能否符合“朝生夕灭”的原则,即大多数对象的生存时间不应当太长,尤其是不能有成批量的、长生存时间的大对象产生,这样才能保障老年代空间的稳定。

在许多网站和B/S形式的应用里,多数对象的生存周期都应该是请求级或者页面级的,会话级和全局级的长生命对象相对较少。只要代码写得合理,实现在超大堆中正常使用没有Full GC应当并不困难,这样的话,使用超大堆内存时,应用响应速度才可能会有所保证。除此之外,如果读者计划使用单个Java虚拟机实例来管理大内存,还需要考虑下面可能面临的问题:

·回收大块堆内存而导致的长时间停顿,自从G1收集器的出现,增量回收得到比较好的应用,这个问题有所缓解,但要到ZGC和Shenandoah收集器成熟之后才得到相对彻底地解决。

·大内存必须有64位Java虚拟机的支持,但由于压缩指针、处理器缓存行容量(Cache Line)等因素,64位虚拟机的性能测试结果普遍略低于相同版本的32位虚拟机。

·必须保证应用程序足够稳定,因为这种大型单体应用要是发生了堆内存溢出,几乎无法产生堆转储快照(要产生十几GB乃至更大的快照文件),哪怕成功生成了快照也难以进行分析;如果确实出了 问题要进行诊断,可能就必须应用JMC这种能够在生产环境中进行的运维工具。

·相同的程序在64位虚拟机中消耗的内存一般比32位虚拟机要大,这是由于指针膨胀,以及数据类型对齐补白等因素导致的,可以开启(默认即开启)压缩指针功能来缓解。 鉴于上述这些问题,现阶段仍然有一些系统管理员选择第二种方式来部署应用:同时使用若干个 虚拟机建立逻辑集群来利用硬件资源。做法是在一台物理机器上启动多个应用服务器进程,为每个服务器进程分配不同端口,然后在前端搭建一个负载均衡器,以反向代理的方式来分配访问请求。这里 无须太在意均衡器转发所消耗的性能,即使是使用第一个部署方案,多数应用也不止有一台服务器,因此应用中前端的负载均衡器总是免不了的。考虑到我们在一台物理机器上建立逻辑集群的目的仅仅是尽可能利用硬件资源,并不是要按职责、按领域做应用拆分,也不需要考虑状态保留、热转移之类的高可用性需求,不需要保证每个虚拟机进程有绝对准确的均衡负载,因此使用无Session复制的亲合式集群是一个相当合适的选择。仅仅需要保障集群具备亲合性,也就是均衡器按一定的规则算法(譬如根据Session ID分配)将一个固定的用户请求永远分配到一个固定的集群节点进行处理即可,这样程序开发阶段就几乎不必为集群环境做任何特别的考虑。

当然,第二种部署方案也不是没有缺点的,如果读者计划使用逻辑集群的方式来部署程序,可能 会遇到下面这些问题:

·节点竞争全局的资源,最典型的就是磁盘竞争,各个节点如果同时访问某个磁盘文件的话(尤其是并发写操作容易出现问题),很容易导致I/O异常。

·很难最高效率地利用某些资源池,譬如连接池,一般都是在各个节点建立自己独立的连接池,这样有可能导致一些节点的连接池已经满了,而另外一些节点仍有较多空余。尽管可以使用集中式的JNDI来解决,但这个方案有一定复杂性并且可能带来额外的性能代价。

·如果使用32位Java虚拟机作为集群节点的话,各个节点仍然不可避免地受到32位的内存限制,在32位Windows平台中每个进程只能使用2GB的内存,考虑到堆以外的内存开销,堆最多一般只能开到 1.5GB。在某些Linux或UNIX系统(如Solaris)中,可以提升到3GB乃至接近4GB的内存,但32位中仍 然受最高4GB(2的32次幂)内存的限制。

·大量使用本地缓存(如大量使用HashMap作为K/V缓存)的应用,在逻辑集群中会造成较大的内存浪费,因为每个逻辑节点上都有一份缓存,这时候可以考虑把本地缓存改为集中式缓存。

6.1.2 集群间同步导致的内存溢出

一个基于B/S的MIS系统,硬件为两台双路处理器、8GB内存的HP小型机,应用中间件是WebLogic9.2,每台机器启动了3个WebLogic实例,构成一个6个节点的亲合式集群。由于是亲合式集群(session粘性 即把session固定发到一个节点上 可能造成负载不均衡),节点之间没有进行Session同步,但是有一些需求要实现部分数据在各个节点间共享。最开始这些数据是存放在数据库中的,但由于读写频繁、竞争很激烈,性能影响较大,后面使用JBossCache构建了一个全局缓存。全局缓存启用后,服务正常使用了一段较长的时间。但在最近不定期出现多次的内存溢出问 题。在内存溢出异常不出现的时候,服务内存回收状况一直正常,每次内存回收后都能恢复到一个稳定的可用空间。开始怀疑是程序某些不常用的代码路径中存在内存泄漏,但管理员反映最近程序并未更新、升级过,也没有进行什么特别操作。只好让服务带着-XX:+HeapDumpOnOutOfMemoryError 参数运行了一段时间。在最近一次溢出之后,管理员发回了堆转储快照,发现里面存在着大量的org.jgroups.protocols.pbcast.NAKACK对象。 JBossCache是基于自家的JGroups进行集群间的数据通信,JGroups使用协议栈的方式来实现收发数据包的各种所需特性自由组合,数据包接收和发送时要经过每层协议栈的up()和down()方法,其中的NAKACK栈用于保障各个包的有效顺序以及重发。

由于信息有传输失败需要重发的可能性,在确认所有注册在GMS(Group Membership Service)的节点都收到正确的信息前,发送的信息必须在内存中保留。而此MIS的服务端中有一个负责安全校验的全局过滤器,每当接收到请求时,均会更新一次最后操作时间,并且将这个时间同步到所有的节点中去,使得一个用户在一段时间内不能在多台机器上重复登录。在服务使用过程中,往往一个页面会产生数次乃至数十次的请求,因此这个过滤器导致集群各个节点之间网络交互非常频繁。当网络情况不能满足传输要求时,重发数据在内存中不断堆积,很快就产生了内存溢出

6.1.3 堆外内存导致的溢出错误

基于B/S的电子考试系统,为了实现客户端能实时地从服务器端接收考试数据,系统使用了逆向AJAX技术(也称为Comet或者Server Side Push),选用CometD 1.1.1作为服务端推送框架,服务器是Jetty 7.1.4,硬件为一台很普通PC机,Core i5 CPU,4GB内存,运行32位 Windows操作系统。 测试期间发现服务端不定时抛出内存溢出异常,服务不一定每次都出现异常,但假如正式考试时崩溃一次,那估计整场电子考试都会乱套。网站管理员尝试过把堆内存调到最大,32位系统最多到 1.6GB基本无法再加大了,而且开大了基本没效果,抛出内存溢出异常好像还更加频繁。加入-XX: +HeapDumpOnOutOfMemoryError参数,居然也没有任何反应,抛出内存溢出异常时什么文件都没有产生。无奈之下只好挂着jstat紧盯屏幕,发现垃圾收集并不频繁,Eden区、Survivor区、老年代以及方法区的内存全部都很稳定,压力并不大,但就是照样不停抛出内存溢出异常。最后,在内存溢出后从系统日志中找到异常堆栈如代码

[org.eclipse.jetty.util.log] handle failed java.lang.OutOfMemoryError: null at sun.misc.Unsafe.allocateMemory(Native Method) at java.nio.DirectByteBuffer.<init>(DirectByteBuffer.java:99) at java.nio.ByteBuffer.allocateDirect(ByteBuffer.java:288) at org.eclipse.jetty.io.nio.DirectNIOBuffer.<init>

看到异常堆栈应该就清楚这个抛出内存溢出异常是怎么回事了。我们知道操作系统对每个进程能管理的内存是有限制的,这台服务器使用的32位Windows平台的限制是 2GB,其中划了1.6GB给Java堆,而Direct Memory耗用的内存并不算入这1.6GB的堆之内,因此它最大也只能在剩余的0.4GB空间中再分出一部分而已。在此应用中导致溢出的关键是垃圾收集进行时,虚拟机虽然会对直接内存进行回收,但是直接内存却不能像新生代、老年代那样,发现空间不足了就主动通知收集器进行垃圾回收,它只能等待老年代满后Full GC出现后,“顺便”帮它清理掉内存的废弃对象。否则就不得不一直等到抛出内存溢出异常时,先捕获到异常,再在Catch块里面通过System.gc()命令来触发垃圾收集。但如果Java虚拟机再打开了-XX:+DisableExplicitGC开关,禁止了人工触发垃圾收集的话,那就只能眼睁睁看着堆中还有许多空闲内存,自己却不得不抛出内存溢出异常了。而本案例中使用的CometD 1.1.1框架,正好有大量的NIO操作需要使用到直接内存。

从实践经验的角度出发,在处理小内存或者32位的应用问题时,除了Java堆和方法区之外,我们注意到下面这些区域还会占用较多的内存,这里所有的内存总和受到操作系统进程最大内存的限制

·直接内存:可通过-XX:MaxDirectMemorySize调整大小,内存不足时抛出OutOf-MemoryError或者OutOfMemoryError:Direct buffer memory。

·线程堆栈:可通过-Xss调整大小,内存不足时抛出StackOverflowError(如果线程请求的栈深度大于虚拟机所允许的深度)或者OutOfMemoryError(如果Java虚拟机栈容量可以动态扩展,当栈扩展时无法申请到足够的内存)。

·Socket缓存区:每个Socket连接都Receive和Send两个缓存区,分别占大约37KB和25KB内存,连接多的话这块内存占用也比较可观。如果无法分配,可能会抛出IOException:Too many open files异常。

·JNI代码:如果代码中使用了JNI调用本地库,那本地库使用的内存也不在堆中,而是占用Java虚拟机的本地方法栈和本地内存的。

·虚拟机和垃圾收集器:虚拟机、垃圾收集器的工作也是要消耗一定数量的内存的。

6.1.4 外部命令导致系统缓慢

一个数字校园应用系统,运行在一台四路处理器的Solaris 10操作系统上,中间件为GlassFish服务器。系统在做大并发压力测试的时候,发现请求响应时间比较慢,通过操作系统的mpstat工具发现处理器使用率很高,但是系统中占用绝大多数处理器资源的程序并不是该应用本身。这是个不正常的现象,通常情况下用户应用的处理器占用率应该占主要地位,才能说明系统是在正常工作。

通过Solaris 10的dtrace脚本可以查看当前情况下哪些系统调用花费了最多的处理器资源,dtrace运行后发现最消耗处理器资源的竟然是“fork”系统调用。众所周知,“fork”系统调用是Linux用来产生新进程的,在Java虚拟机中,用户编写的Java代码通常最多只会创建新的线程,不应当有进程的产生,这又是个相当不正常的现象。

通过联系该系统的开发人员,最终找到了答案:每个用户请求的处理都需要执行一个外部Shell脚本来获得系统的一些信息。执行这个Shell脚本是通过Java的Runtime.getRuntime().exec()方法来调用的。 这种调用方式可以达到执行Shell脚本的目的,但是它在Java虚拟机中是非常消耗资源的操作,即使外部命令本身能很快执行完毕,频繁调用时创建进程的开销也会非常可观。Java虚拟机执行这个命令的过程是首先复制一个和当前虚拟机拥有一样环境变量的进程,再用这个新的进程去执行外部命令,最后再退出这个进程。如果频繁执行这个操作,系统的消耗必然会很大,而且不仅是处理器消耗,内存负担也很重。 用户根据建议去掉这个Shell脚本执行的语句,改为使用Java的API去获取这些信息后,系统很快恢复了正常。

6.1.5 服务器虚拟机进程崩溃

一个基于B/S的MIS系统,硬件为两台双路处理器、8GB内存的HP系统,服务器是WebLogic 9.2(与第二个案例中那套是同一个系统)。正常运行一段时间后,最近发现在运行期间频繁出现集群节点的虚拟机进程自动关闭的现象,留下了一个hs_err_pid###.log文件后,虚拟机进程就消失了,两台 物理机器里的每个节点都出现过进程崩溃的现象。从系统日志中注意到,每个节点的虚拟机进程在崩溃之前,都发生过大量相同的异常,

这是一个远端断开连接的异常,通过系统管理员了解到系统最近与一个OA门户做了集成,在MIS系统工作流的待办事项变化时,要通过Web服务通知OA门户系统,把待办事项的变化同步到OA门户之中。通过SoapUI测试了一下同步待办事项的几个Web服务,发现调用后竟然需要长达3分钟才能返 回,并且返回结果都是超时导致的连接中断。 由于MIS系统的用户多,待办事项变化很快,为了不被OA系统速度拖累,使用了异步的方式调用 Web服务,但由于两边服务速度的完全不对等,时间越长就累积了越多Web服务没有调用完成,导致在 等待的线程和Socket连接越来越多,最终超过虚拟机的承受能力后导致虚拟机进程崩溃。通知OA门户 方修复无法使用的集成接口,并将异步调用改为生产者/消费者模式的消息队列实现后,系统恢复正常。

6.1.6 不恰当的数据结构导致内存占用过大

一个后台RPC服务器,使用64位Java虚拟机,内存配置为-Xms4g-Xmx8g-Xmn1g,使用ParNew加CMS的收集器组合。平时对外服务的Minor GC时间约在30毫秒以内,完全可以接受。但业务上需要每10分钟加载一个约80MB的数据文件到内存进行数据分析,这些数据会在内存中形成超过100万个 HashMap<Long,Long>Entry,在这段时间里面Minor GC就会造成超过500毫秒的停顿,对于这种长度的停顿时间就接受不了了。

{Heap before GC invocations=95 (full 4): par new generation total 903168K, used 803142K [0x00002aaaae770000, 0x00002aaaebb70000, 0x00002aaaebb70000) eden space 802816K, 100% used [0x00002aaaae770000, 0x00002aaadf770000, 0x00002aaadf770000) from space 100352K, 0% used [0x00002aaae5970000, 0x00002aaae59c1910, 0x00002aaaebb70000) to space 100352K, 0% used [0x00002aaadf770000, 0x00002aaadf770000, 0x00002aaae5970000) concurrent mark-sweep generation total 5845540K, used 3898978K [0x00002aaaebb70000, 0x00002aac507f9000, 0x00002aacae770000) concurrent-mark-sweep perm gen total 65536K, used 40333K [0x00002aacae770000, 0x00002aacb2770000, 0x00002aacb2770000) 2011-10-28T11:40:45.162+0800: 226.504: [GC 226.504: [ParNew: 803142K-> 100352K(903168K), 0.5995670 secs] 4702120K->4056332K(6748708K), 0.5997560 secs] [Times: user=1.46 sys=0.04, real=0.60 secs] Heap after GC invocations=96 (full 4): par new generation total 903168K, used 100352K [0x00002aaaae770000, 0x00002-aaaebb70000, 0x00002aaaebb70000) eden space 802816K, 0% used [0x00002aaaae770000, 0x00002aaaae770000, 0x00002aaadf770000) from space 100352K, 100% used [0x00002aaadf770000, 0x00002aaae5970000, 0x00002aaae5970000) to space 100352K, 0% used [0x00002aaae5970000, 0x00002aaae5970000, 0x00002aaaebb70000) concurrent mark-sweep generation total 5845540K, used 3955980K [0x00002aaaebb70000, 0x00002aac507f9000, 0x00002aacae770000) concurrent-mark-sweep perm gen total 65536K, used 40333K [0x00002aacae770000, 0x00002aacb2770000, 0x00002aacb2770000) }Total time for which application threads were stopped: 0.6070570 seconds

观察这个案例的日志,平时Minor GC时间很短,原因是新生代的绝大部分对象都是可清除的,在Minor GC之后Eden和Survivor基本上处于完全空闲的状态。但是在分析数据文件期间,800MB的Eden空间很快被填满引发垃圾收集,但Minor GC之后,新生代中绝大部分对象依然是存活的。我们知道ParNew收集器使用的是复制算法,这个算法的高效是建立在大部分对象都“朝生夕灭”的特性上的,如果存活对象过多,把这些对象复制到Survivor并维持这些对象引用的正确性就成为一个沉重的负担,因 此导致垃圾收集的暂停时间明显变长。

如果不修改程序,仅从GC调优的角度去解决这个问题,可以考虑直接将Survivor空间去掉(加入参数-XX:SurvivorRatio=65536、-XX:MaxTenuringThreshold=0或者-XX:+Always-Tenure),让新生代中存活的对象在第一次Minor GC后立即进入老年代,等到Major GC的时候再去清理它们。这种措施可以治标,但也有很大副作用;治本的方案必须要修改程序,因为这里产生问题的根本原因是用 HashMap<Long,Long>结构来存储数据文件空间效率太低了。 我们具体分析一下HashMap空间效率,在HashMap<Long,Long>结构中,只有Key和Value所存放的两个长整型数据是有效数据,共16字节(2×8字节)。这两个长整型数据包装成java.lang.Long对象之 后,就分别具有8字节的Mark Word、8字节的Klass指针,再加8字节存储数据的long值。然后这2个Long对象组成Map.Entry之后,又多了16字节的对象头,然后一个8字节的next字段和4字节的int型的 hash字段,为了对齐,还必须添加4字节的空白填充,最后还有HashMap中对这个Entry的8字节的引 用,这样增加两个长整型数字,实际耗费的内存为(Long(24byte)×2)+Entry(32byte)+HashMap Ref(8byte)=88byte,空间效率为有效数据除以全部内存空间,即16字节/88字节=18%,这确实太低了。

6.1.7 由Windows虚拟内存导致的长时间停顿

有一个带心跳检测功能的GUI桌面程序,每15秒会发送一次心跳检测信号,如果对方30秒以内都没有信号返回,那就认为和对方程序的连接已经断开。程序上线后发现心跳检测有误报的可能,查询日志发现误报的原因是程序会偶尔出现间隔约一分钟的时间完全无日志输出,处于停顿状态。 因为是桌面程序,所需的内存并不大(-Xmx256m),所以开始并没有想到是垃圾收集导致的程序停顿,但是加入参数-XX:+PrintGCApplicationStoppedTime-XX:+PrintGCDate-Stamps-Xloggc: gclog.log后,从收集器日志文件中确认了停顿确实是由垃圾收集导致的,大部分收集时间都控制在100 毫秒以内,但偶尔就出现一次接近1分钟的长时间收集过程。

Total time for which application threads were stopped: 0.0112389 seconds 
Total time for which application threads were stopped: 0.0001335 seconds 
Total time for which application threads were stopped: 0.0003246 seconds 
Total time for which application threads were stopped: 41.4731411 seconds 
Total time for which application threads were stopped: 0.0489481 seconds 
Total time for which application threads were stopped: 0.1110761 seconds 
Total time for which application threads were stopped: 0.0007286 seconds 
Total time for which application threads were stopped: 0.0001268 seconds

从收集器日志中找到长时间停顿的具体日志信息(再添加了-XX:+PrintReferenceGC参数),找到的日志片段如下所示。从日志中看到,真正执行垃圾收集动作的时间不是很长,但从准备开始收集,到真正开始收集之间所消耗的时间却占了绝大部分。

除收集器日志之外,还观察到这个GUI程序内存变化的一个特点,当它最小化的时候,资源管理中显示的占用内存大幅度减小,但是虚拟内存则没有变化,因此怀疑程序在最小化时它的工作内存被自动交换到磁盘的页面文件之中了,这样发生垃圾收集时就有可能因为恢复页面文件的操作导致不正常的垃圾收集停顿。

6.1.8 由安全点导致的长时间停顿

有一个比较大的承担公共计算任务的离线HBase集群,运行在JDK 8上,使用G1收集器。每天都有大量的MapReduce或Spark离线分析任务对其进行访问,同时有很多其他在线集群Replication过来的数据写入,因为集群读写压力较大,而离线分析任务对延迟又不会特别敏感,所以将-XX: MaxGCPauseMillis参数设置到了500毫秒。不过运行一段时间后发现垃圾收集的停顿经常达到3秒以上,而且实际垃圾收集器进行回收的动作就只占其中的几百毫秒,现象如以下日志所示。

image-20210818091937182

考虑到不是所有读者都了解计算机体系和操作系统原理,笔者先解释一下user、sys、real这三个时间的概念:

·user:进程执行用户态代码所耗费的处理器时间。

·sys:进程执行核心态代码所耗费的处理器时间。

·real:执行动作从开始到结束耗费的时钟时间。

请注意,前面两个是处理器时间,而最后一个是时钟时间,它们的区别是处理器时间代表的是线程占用处理器一个核心的耗时计数,而时钟时间就是现实世界中的时间计数。如果是单核单线程的场景下,这两者可以认为是等价的,但如果是多核环境下,同一个时钟时间内有多少处理器核心正在工作,就会有多少倍的处理器时间被消耗和记录下来。

在垃圾收集调优时,我们主要依据real时间为目标来优化程序,因为最终用户只关心发出请求到得 到响应所花费的时间,也就是响应速度,而不太关心程序到底使用了多少个线程或者处理器来完成任 务。

日志显示这次垃圾收集一共花费了0.14秒,但其中用户线程却足足停顿了有2.26秒,两者差距已经 远远超出了正常的TTSP(Time To Safepoint)耗时的范畴。所以先加入参数-XX: +PrintSafepointStatistics和-XX:PrintSafepointStatisticsCount=1去查看安全点日志,具体如下所示:

image-20210818092022597

日志显示当前虚拟机的操作(VM Operation,VMOP)是等待所有用户线程进入到安全点,但是有两个线程特别慢,导致发生了很长时间的自旋等待。日志中的2255毫秒自旋(Spin)时间就是指由 于部分线程已经走到了安全点,但还有一些特别慢的线程并没有到,所以垃圾收集线程无法开始工作,只能空转(自旋)等待。

解决问题的第一步是把这两个特别慢的线程给找出来,这个倒不困难,添加-XX:+SafepointTimeout和-XX:SafepointTimeoutDelay=2000两个参数,让虚拟机在等到线程进入安全点的时间超过2000毫秒时就认定为超时,这样就会输出导致问题的线程名称,得到的日志如下所示:

image-20210818092051285

从错误日志中顺利得到了导致问题的线程名称为“RpcServer.listener,port=24600”。但是为什么它们会出问题呢?有什么因素可以阻止线程进入安全点?在第3章关于安全点的介绍中,我们已经知道安 全点是以“是否具有让程序长时间执行的特征”为原则进行选定的,所以方法调用、循环跳转、异常跳转这些位置都可能会设置有安全点,但是HotSpot虚拟机为了避免安全点过多带来过重的负担,对循环还有一项优化措施,认为循环次数较少的话,执行时间应该也不会太长,所以使用int类型或范围更小的数据类型作为索引值的循环默认是不会被放置安全点的。这种循环被称为可数循环(Counted Loop),相对应地,使用long或者范围更大的数据类型作为索引值的循环就被称为不可数循环 (Uncounted Loop),将会被放置安全点。通常情况下这个优化措施是可行的,但循环执行的时间不单单是由其次数决定,如果循环体单次执行就特别慢,那即使是可数循环也可能会耗费很多的时间。

HotSpot原本提供了-XX:+UseCountedLoopSafepoints参数去强制在可数循环中也放置安全点,不 过这个参数在JDK 8下有Bug,有导致虚拟机崩溃的风险,所以就不得不找到RpcServer线程里面的缓慢代码来进行修改。最终查明导致这个问题是HBase中一个连接超时清理的函数,由于集群会有多个MapReduce或Spark任务进行访问,而每个任务又会同时起多个Mapper/Reducer/Executer,其每一个 都会作为一个HBase的客户端,这就导致了同时连接的数量会非常多。更为关键的是,清理连接的索 引值就是int类型,所以这是一个可数循环,HotSpot不会在循环中插入安全点。当垃圾收集发生时, 如果RpcServer的Listener线程刚好执行到该函数里的可数循环时,则必须等待循环全部跑完才能进入安全点,此时其他线程也必须一起等着,所以从现象上看就是长时间的停顿。找到了问题,解决起来就非常简单了,把循环索引的数据类型从int改为long即可,但如果不具备安全点和垃圾收集的知识,这种问题是很难处理的。

6.2 实战:Idea运行速度调优

PART2:虚拟机执行子系统

7 类文件结构

最近十年内虚拟机以及大量建立在虚拟机之上的程序语言如雨后春笋般出现并蓬勃发展,把我们编写的程序编译成二进制本地机器码(Native Code)已不再是唯一的选择,越来越多的程序语言选择了与操作系统和机器指令集无关的、平台中立的格式作为程序编译后的存储格式。

7.1 无关性的基石

各种不同平台的Java虚拟机,以及所有平台都统一支持的程序存储格式——字节码(Byte Code) 是构成平台无关性的基石

实现语言无关性的基础仍然是虚拟机字节码存储格式。Java虚拟机不与包括Java语言在内的任何程序语言绑定,它只与“Class文件”这种特定的二进制文件格式所关联,Class文件中包含了Java虚拟机指令集、符号表以及若干其他辅助信息。基于安全方面的考虑,《Java虚拟机规范》中要求在Class文件必须应用许多强制性的语法和结构化约束,但图灵完备的字节码格式,保证了任意一门功能性语言都可以表示为一个能被Java虚拟机所接受的有效的Class文件。作为一个通用的、与机器无关的执行平台,任何其他语言的实现者都可以将Java虚拟机作为他们语言的运行基础,以Class文件作为他们产品的交付媒介。使用Java编译器可以把Java代码编译为存储字节码的Class文件,使用JRuby等其他语言的编译器一样可以把它们的源程序代码编译成Class文件。虚拟机丝毫不关心Class的来源是什么语言。

Java语言中的各种语法、关键字、常量变量和运算符号的语义最终都会由多条字节码指令组合来表达,这决定了字节码指令所能提供的语言描述能力必须比Java语言本身更加强大才行。因此,有一些Java语言本身无法有效支持的语言特性并不代表在字节码中也无法有效表达出来,这为其他程序语言实现一些有别于Java的语言特性提供了发挥空间。

image-20210818102959739

7.2 Class文件的结构

任何一个Class文件都对应着唯一的一个类或接口的定义信息,但是反过来说,类或接口并不一定都得定义在文件里(譬如类或接口也可以动态生成,直接送入类加载器中)。实际上它完全不需要以磁盘文件的形式存在。

Class文件是一组以8个字节为基础单位的二进制流,各个数据项目严格按照顺序紧凑地排列在文件之中,中间没有添加任何分隔符,这使得整个Class文件中存储的内容几乎全部是程序运行的必要数据,没有空隙存在。当遇到需要占用8个字节以上空间的数据项时,则会按照高位在前的方式分割成若干个8个字节进行存储。

根据《Java虚拟机规范》的规定,Class文件格式采用一种类似于C语言结构体的伪结构来存储数据,这种伪结构中只有两种数据类型:“无符号数”和“”。后面的解析都要以这两种数据类型为基础,所以这里笔者必须先解释清楚这两个概念。

  • 无符号数属于基本的数据类型,以u1、u2、u4、u8来分别代表1个字节、2个字节、4个字节和8个字节的无符号数,无符号数可以用来描述数字、索引引用、数量值或者按照UTF-8编码构成字符串 值。
  • 表是由多个无符号数或者其他表作为数据项构成的复合数据类型,为了便于区分,所有表的命名 都习惯性地以“_info”结尾。表用于描述有层次关系的复合结构的数据,整个Class文件本质上也可以视作是一张表,这张表由表所示的数据项按严格顺序排列构成。

image-20210818110731104

无论是无符号数还是表,当需要描述同一类型但数量不定的多个数据时,经常会使用一个前置的容量计数器加若干个连续的数据项的形式,这时候称这一系列连续的某一类型的数据为某一类型的“集合”。

Class的结构不像XML等描述语言,由于它没有任何分隔符号,所以在表6-1中的数据项,无论是顺序还是数量,甚至于数据存储的字节序(Byte Ordering,Class文件中字节序为Big-Endian)这样的细节,都是被严格限定的,哪个字节代表什么含义,长度是多少,先后顺序如何,全部都不允许改变。

7.2.1 魔数与Class文件的版本

每个Class文件的头4个字节被称为魔数(Magic Number),它的唯一作用是确定这个文件是否为一个能被虚拟机接受的Class文件

使用魔数而不是扩展名来进行识别主要是基于安全考虑,因为文件扩展名可以随意改动。文件格式的制定者可以自由地选择魔数值,只要这个魔数值还没有被广泛采用过而且不会引起混淆。

紧接着魔数的4个字节存储的是Class文件的版本号:第5和第6个字节是次版本号(Minor Version),第7和第8个字节是主版本号(Major Version)。Java的版本号是从45开始的。

高版本的JDK能向下兼容以前版本的Class文件,但不能运行以后版本的Class文件,因为《Java虚拟机规范》在Class文件校验部分明确要求了即使文件格式并未发生任何变化,虚拟机也必须拒绝执行超过其版本号的Class 文件。

JDK 1.1能支持版本号为45.0~45.65535的Class文件,无法执行版本号为46.0以上的Class文件,而JDK 1.2则能支持45.0~46.65535的Class文件。目前最新的JDK版本为13,可生成的Class文件主 版本号最大值为57.0。

使用十六进制编辑器WinHex打开这个Class文件的结果,可以清楚地看见开头4个字节的十六进制表示是0xCAFEBABE,代表次版本号的第5个和第6个字节值为0x0000,而主版本号的值 为0x0032,也即是十进制的50,该版本号说明这个是可以被JDK 6或以上版本虚拟机执行的Class文件。

image-20210818112148237

下表列出了从JDK 1.1到13之间,主流JDK版本编译器输出的默认的和可支持的Class文件版本号。

image-20210818112215535

注:从JDK 9开始,Javac编译器不再支持使用-source参数编译版本号小于1.5的源码。

关于次版本号,曾经在现代Java(即Java 2)出现前被短暂使用过,JDK 1.0.2支持的版本45.0~45.3(包括45.0~45.3)。JDK 1.1支持版本45.0~45.65535,从JDK 1.2以后,直到JDK 12之前次版本号均未使用,全部固定为零。而到了JDK 12时期,由于JDK提供的功能集已经非常庞大,有一些复杂的新特性需要以“公测”的形式放出,所以设计者重新启用了副版本号,将它用于标识“技术预览版”功 能特性的支持。如果Class文件中使用了该版本JDK尚未列入正式特性清单中的预览功能,则必须把次版本号标识为65535,以便Java虚拟机在加载类文件时能够区分出来。

7.2.2 常量池

紧接着主、次版本号之后的是常量池入口,常量池可以比喻为Class文件里的资源仓库,它是Class文件结构中与其他项目关联最多的数据,通常也是占用Class文件空间最大的数据项目之一,另外,它还是在Class文件中第一个出现的表类型数据项目

由于常量池中常量的数量是不固定的,所以在常量池的入口需要放置一项u2类型的数据,代表常量池容量计数值(constant_pool_count)。与Java中语言习惯不同,这个容量计数是从1而不是0开始 的,如图所示,常量池容量(偏移地址:0x00000008)为十六进制数0x0016,即十进制的22,这就 代表常量池中有21项常量,索引值范围为1~21。在Class文件格式规范制定之时,设计者将第0项常量空出来是有特殊考虑的,这样做的目的在于,如果后面某些指向常量池的索引值的数据在特定情况下需要表达“不引用任何一个常量池项目”的含义,可以把索引值设置为0来表示。Class文件结构中只有常量池的容量计数是从1开始,对于其他集合类型,包括接口索引集合、字段表集合、方法表集合等的容量计数都与一般习惯相同,是从0开始。

image-20210818142251672

常量池中主要存放两大类常量:字面量(Literal)符号引用(Symbolic References)。字面量比较接近于Java语言层面的常量概念,如文本字符串、被声明为final的常量值等。而符号引用则属于编译原理方面的概念,主要包括下面几类常量:

  • 被模块导出或者开放的包(Package)
  • 类和接口的全限定名(Fully Qualified Name)
  • 字段的名称和描述符(Descriptor)
  • 方法的名称和描述符
  • 方法句柄和方法类型(Method Handle、Method Type、Invoke Dynamic)
  • 动态调用点和动态常量(Dynamically-Computed Call Site、Dynamically-Computed Constant)

Java代码在进行Javac编译的时候,并不像C和C++那样有“连接”这一步骤,而是在虚拟机加载Class文件的时候进行动态连接,在Class文件中不会保存各个方法、字段最终在内存中的布局信息,这些字段、方法的符号引用不经过虚拟机在运行期转换的话是无法得到真正的内存入口地址(类比C++中连接的几种方式,何时映射到内存地址中),也就无法直接被虚拟机使用的。当虚拟机做类加载时,将会从常量池获得对应的符号引用,再在类创建时或运行时解析、翻译到具体的内存地址之中。

常量池中每一项常量都是一个表,最初常量表中共有11种结构各不相同的表结构数据,后来为了更好地支持动态语言调用,额外增加了4种动态语言相关的常量,为了支持Java模块化系统 (Jigsaw),又加入了CONSTANT_Module_info和CONSTANT_Package_info两个常量,所以截至JDK 13,常量表中分别有17种不同类型的常量。

image-20210818145030917

Constant_Class_info类型:

image-20210818150735771

tag是标志位,它用于区分常量类型;name_index是常量池的索引值,它指向常量池中一个CONSTANT_Utf8_info类型常量,此常量代表了这个类(或者接口)的全限定名,本例中的name_index值(偏移地址:0x0000000B)为0x0002,也就是指向了常量池中的第二项常量。继续从图中查找第二项常量,它的标志位(地址:0x0000000D)是0x01,查表可知确实是一个CONSTANT_Utf8_info类型的常量CONSTANT_Utf8_info类型的结构如表所示。

image-20210818151255213

length值说明了这个UTF-8编码的字符串长度是多少字节,它后面紧跟着的长度为length字节的连续数据是一个使用UTF-8缩略编码表示的字符串。UTF-8缩略编码与普通UTF-8编码的区别是:从’\u0001’到’\u007f’之间的字符(相当于1~127的ASCII码)的缩略编码使用一个字节表示,从’\u0080’到’\u07ff’之间的所有字符的缩略编码用两个字节表示,从’\u0800’开始到’\uffff’之间的所有字符的缩略编码就按照普通UTF-8编码规则使用三个字节表示。

顺便提一下,由于Class文件中方法、字段等都需要引用CONSTANT_Utf8_info型常量来描述名称,所以CONSTANT_Utf8_info型常量的最大长度也就是Java中方法、字段名的最大长度。而这里的 最大长度就是length的最大值,既u2类型能表达的最大值65535。所以Java程序中如果定义了超过64KB英文字符的变量或方法名,即使规则和全部字符都是合法的,也会无法编译。(所以java中String字符串最大长度为65535字节!)

本例中这个字符串的length值(偏移地址:0x0000000E)为0x001D,也就是长29个字节,往后29个字节正好都在1~127的ASCII码范围以内,内容为“org/fenixsoft/clazz/TestClass”,换算结果如图:

image-20210818152639425

后续的19个常量的计算过程就不手工去做了,而借助计算机软件来帮忙完成。在JDK的bin目录中,Oracle公司已经为我们准备好一个专门用于分析Class文件字节码的工具:javap。

image-20210818153308492

仔细看一下会发现,其中有些常量似乎从来没有在代码中出现过,如“I”“V”“”“LineNumberTable”“LocalVariableTable”等,这些看起来在源代码中不存在的常量是哪里来的?

这部分常量的确不来源于Java源代码,它们都是编译器自动生成的,会被后面即将讲到的字段表(field_info)、方法表(method_info)、属性表(attribute_info)所引用,它们将会被用来描述一些不方便使用固定字节”进行表达的内容,譬如描述方法的返回值是什么,有几个参数,每个参数的类型是什么。因为Java中的“类”是无穷无尽的,无法通过简单的无符号数来描述一个方法用到了什么类,因此在描述方法的这些信息时,需要引用常量表中的符号引用进行表达。

常量池中17中常量项的结构定义:

image-20210818160619527

image-20210818160651017

image-20210818160704968

image-20210818160713331

7.2.3 访问标志

在常量池结束之后,紧接着的2个字节代表访问标志(access_flags),这个标志用于识别一些类或者接口层次的访问信息,包括:这个Class是类还是接口;是否定义为public类型;是否定义为abstract类型;如果是类的话,是否被声明为final;等等。

image-20210818161619853

7.2.4 类索引、父类索引与接口索引集合

类索引(this_class)和父类索引(super_class)都是一个u2类型的数据,而接口索引集合(interfaces)是一组u2类型的数据的集合,Class文件中由这三项数据来确定该类型的继承关系。类索引用于确定这个类的全限定名,父类索引用于确定这个类的父类的全限定名。由于Java语言不允许多重继承,所以父类索引只有一个,除了java.lang.Object之外,所有的Java类都有父类,因此除了java.lang.Object外,所有Java类的父类索引都不为0。接口索引集合就用来描述这个类实现了哪些接口,这些被实现的接口将按implements关键字(如果这个Class文件表示的是一个接口,则应当是extends关键字)后的接口顺序从左到右排列在接口索引集合中。

类索引、父类索引和接口索引集合都按顺序排列在访问标志之后,类索引和父类索引用两个u2类型的索引值表示(非表即_info),它们各自指向一个类型为CONSTANT_Class_info的类描述符常量,通过 CONSTANT_Class_info类型的常量中的索引值可以找到定义在CONSTANT_Utf8_info类型的常量中的全限定名字符串。

image-20210818165643301

对于接口索引集合,入口的第一项u2类型的数据为接口计数器(interfaces_count),表示索引表的容量。如果该类没有实现任何接口,则该计数器值为0,后面接口的索引表不再占用任何字节。

image-20210818165701413

从偏移地址0x000000F1开始的3个u2类型的值分别为0x0001、0x0003、0x0000,也就是类索引为1,父类索引为3,接口索引集合大小为0。查询前面代码javap命令计算出来的常量池,找出对应的类和父类的常量,

const #1 = class #2; // org/fenixsoft/clazz/TestClass const 
#2 = Asciz org/fenixsoft/clazz/TestClass; 
const #3 = class #4; // java/lang/Object
const #4 = Asciz java/lang/Object;
7.2.5 字段表集合

字段表(field_info)用于描述接口或者类中声明的变量。Java语言中的“字段”(Field)包括类级变量以及实例级变量,但不包括在方法内部声明的局部变量。字段可以包括的修饰符有字段的作用域(public、private、protected修饰符)、是实例变量还是类变量(static修饰符)、可变性(final)、并发可见性(volatile修饰符,是否强制从主内存读写)、可否被序列化(transient修饰符)、字段数据类型(基本类型、对象、数组)、字段名称。上述这些信息中,各个修饰符都是布尔值,要么有某个修饰符,要么没有,很适合使用标志位来表示。而字段叫做什么名字、字段被定义为什么数据类型,这些都是无法固定的,只能引用常量池中的常量来描述。因此下表为字段表的最终格式:

image-20210818172637784

字段修饰符放在access_flags项目中,它与类中的access_flags项目是非常类似的,都是一个u2的数据类型,其中可以设置的标志位和含义如表

image-20210818172731587

很明显,由于语法规则的约束,ACC_PUBLIC、ACC_PRIVATE、ACC_PROTECTED三个标志最多只能选择其一,ACC_FINAL、ACC_VOLATILE不能同时选择。接口之中的字段必须有ACC_PUBLIC、ACC_STATIC、ACC_FINAL标志,这些都是由Java本身的语言规则所导致的。 跟随access_flags标志的是两项索引值:name_index和descriptor_index。它们都是对常量池项的引用,分别代表着字段的简单名称以及字段和方法的描述符。现在需要解释一下“简单名称”“描述符”以 及前面出现过多次的“全限定名”这三种特殊字符串的概念。

“org/fenixsoft/clazz/TestClass”是这个类的全限定名,仅仅是把类全名中的“.”替换成了“/”而已,为了使连续的多个全限定名之间不产生混淆,在使用时最后一般会加入一个“;”号表示全限定名结束。简单名称则就是指没有类型和参数修饰的方法或者字段名称,这个类中的inc()方法和m字段的简单名称分别就是“inc”和“m”。

相比于全限定名和简单名称,方法和字段的描述符就要复杂一些。描述符的作用是用来描述字段的数据类型方法的参数列表(包括数量、类型以及顺序)和返回值。根据描述符规则,基本数据类型(byte、char、double、float、int、long、short、boolean)以及代表无返回值的void类型都用一个大写字符来表示,而对象类型则用字符L加对象的全限定名来表示

image-20210818183141811

对于数组类型,每一维度将使用一个前置的“[”字符来描述,如一个定义为“java.lang.String[][]”类型的二维数组将被记录成“[[Ljava/lang/String;”,一个整型数组“int[]”将被记录成“[I”。

用描述符来描述方法时,按照先参数列表、后返回值的顺序描述,参数列表按照参数的严格顺序放在一组小括号“()”之内。如方法void inc()的描述符为“()V”,方法java.lang.String toString()的描述符为“()Ljava/lang/String;”,方法int indexOf(char[]source,int sourceOffset,int sourceCount,char[]target,int targetOffset,int targetCount,int fromIndex)的描述符为“([CII[CIII)I”。

字段表集合从地址0x000000F8开始,第一个u2类型的数据为容量计数器fields_count,如图所示,其值为0x0001,说明这个类只有一个字段表数据。接下来紧跟着容量计数器的是access_flags标志,值为0x0002,代表private修饰符的ACC_PRIVATE标志位为真(ACC_PRIVATE标志的值为0x0002),其他修饰符为假。代表字段名称的name_index的值 为0x0005,从代码清单6-2列出的常量表中可查得第五项常量是一个CONSTANT_Utf8_info类型的字符 串,其值为“m”,代表字段描述符的descriptor_index的值为0x0006,指向常量池的字符串“I”。根据这些信息,我们可以推断出原代码定义的字段为“private int m;”。

image-20210818184824279

字段表所包含的固定数据项目到descriptor_index为止就全部结束了,不过在descriptor_index之后跟随着一个属性表集合,用于存储一些额外的信息,字段表可以在属性表中附加描述零至多项的额外信息。对于本例中的字段m,它的属性表计数器为0,也就是没有需要额外描述的信息,但是,如果将 字段m的声明改为“final static int m=123;”,那就可能会存在一项名称为ConstantValue的属性,其值指向常量123。

字段表集合中不会列出从父类或者父接口中继承而来的字段,但有可能出现原本Java代码之中不存在的字段,譬如在内部类中为了保持对外部类的访问性,编译器就会自动添加指向外部类实例的字段。另外,在Java语言中字段是无法重载的,两个字段的数据类型、修饰符不管是否相同,都必须使用不一样的名称,但是对于Class文件格式来讲,只要两个字段的描述符不是完全相同,那字段重名就是合法的。

7.2.6 方法表集合

Class文件存储格式中对方法的描述与对字段的描述采用了几乎完全一致的方式,方法表的结构如同字段表一样,依次包括访问标志(access_flags)、名称索引(name_index)、描述符索引(descriptor_index)、属性表 集合(attributes)几项这些数据项目的含义也与字段表中的非常类似,仅在访问标志和属性表集合的可选项中有所区别。

image-20210818190910509

因为volatile关键字和transient关键字不能修饰方法,所以方法表的访问标志中没有了ACC_VOLATILE标志和ACC_TRANSIENT标志。与之相对,synchronized、native、strictfp和abstract关键字可以修饰方法,方法表的访问标志中也相应地增加了ACC_SYNCHRONIZED、ACC_NATIVE、ACC_STRICTFP和ACC_ABSTRACT标志。

image-20210818190950048

方法里的Java代码,经过Javac编译器编译成字节码指令之后,存放在方法属性表集合中一个名为“Code”的属性里面,属性表作为Class文件格式中最具扩展性的一种数据项目,将在下一节中详细讲解。 代码如下:

package org.fenixsoft.clazz; 
public class TestClass { 
private int m; 
public int inc() 
{ return m + 1; } 
}

image-20210818192325827

方法表集合的入口地址为0x00000101,第一个u2类型的数据(即计数器容量)的值为0x0002,代表集合中有两个方法,这两个方法为编译器添加的实例构造器和源码中定义的方法inc()。第一个方法的访问标志值为0x0001,也就是只有ACC_PUBLIC标志为真,名称索引值为0x0007,查javap计算出的字节码文件各字节值的常量池得方法名为“”,描述符索引值为0x0008,对应常量为“()V”,属性表计数器attributes_count的值为0x0001,表示此方法的属性表集合有1项属性,属性名称的索引值为0x0009,对应常量为“Code”,说明此属性是方法的字节码描述。

image-20210819081606494

与字段表集合相对应地,如果父类方法在子类中没有被重写(Override),方法表集合中就不会出现来自父类的方法信息。但同样地,有可能会出现由编译器自动添加的方法,最常见的便是类构造器“()”方法和实例构造器“()”方法

在Java语言中,要重载(Overload)一个方法,除了要与原方法具有相同的简单名称之外,还要求必须拥有一个与原方法不同的特征签名。特征签名是指一个方法中各个参数在常量池中的字段符号引用的集合,也正是因为返回值不会包含在特征签名之中,所以Java语言里面是无法仅仅依靠返回值的不同来对一个已有方法进行重载的。但是在Class文件格式之中,特征签名的范围明显要更大一些,只要描述符不是完全一致的两个方法就可以共存。也就是说,如果两个方法有相同的名称和特征签名,但返回值不同,那么也是可以合法共存于同一个Class文件中的

Java代码的方法特征签名只包括方法名称、参数顺序及参数类型,而字节码的特征签名还包括方法返回值以及受查异常表

7.2.7 属性表集合

属性表(attribute_info)在前面的讲解之中已经出现过数次,Class文件、字段表、方法表都可以携带自己的属性表集合,以描述某些场景专有的信息。

与Class文件中其他的数据项目要求严格的顺序、长度和内容不同,属性表集合的限制稍微宽松一些,不再要求各个属性表具有严格顺序,并且《Java虚拟机规范》允许只要不与已有属性名重复,任何人实现的编译器都可以向属性表中写入自己定义的属性信息,Java虚拟机运行时会忽略掉它不认识的属性。为了能正确解析Class文件,《Java虚拟机规范》最初只预定义了9项所有Java虚拟机实现都应当能识别的属性,而在最新的《Java虚拟机规范》的Java SE 12版本中,预定义属性已经增加到29项, 这些属性具体见表

image-20210818194354542

image-20210818194514472

对于每一个属性,它的名称都要从常量池中引用一个CONSTANT_Utf8_info类型的常量来表示,而属性值的结构则是完全自定义的,只需要通过一个u4的长度属性去说明属性值所占用的位数即可。 一个符合规则的属性表应该满足下表:

image-20210819074337838

1.Code属性

Java程序方法体里面的代码经过Javac编译器处理之后,最终变为字节码指令存储在Code属性内。Code属性出现在方法表的属性集合之中,但并非所有的方法表都必须存在这个属性,譬如接口或者抽象类中的方法就不存在Code属性,如果方法表有Code属性存在,那么它的结构将如表:

Code属性表的结构

image-20210819075005368

attribute_name_index是一项指向CONSTANT_Utf8_info型常量的索引,此常量值固定为“Code”,它代表了该属性的属性名称,attribute_length指示了属性值的长度,由于属性名称索引与属性长度一共为 6个字节,所以属性值的长度固定为整个属性表长度减去6个字节。

max_stack代表了操作数栈(Operand Stack)深度的最大值。在方法执行的任意时刻,操作数栈都不会超过这个深度。虚拟机运行的时候需要根据这个值来分配栈帧(Stack Frame)中的操作栈深度。

max_locals代表了局部变量表所需的存储空间。在这里,max_locals的单位是变量槽(Slot),变量槽是虚拟机为局部变量分配内存所使用的最小单位。注意,并不是在方法中用了多少个局部变量,就把这些局部变量所占变量槽数量之和作为max_locals的值,操作数栈和局部变量表直接决定一个该方法的栈帧所耗费的内存,不必要的操作数栈深度和变量槽数量会造成内存的浪费。Java虚拟机的做法是将局部变量表中的变量槽进行重用,当代码执行超出一个局部变量的作用域时,这个局部变量所占的变量 槽可以被其他局部变量所使用,Javac编译器会根据变量的作用域来分配变量槽给各个变量使用,根据同时生存的最大局部变量数量和类型计算出max_locals的大小。

code_length和code用来存储Java源程序编译后生成的字节码指令。code_length代表字节码长度,code是用于存储字节码指令的一系列字节流。既然叫字节码指令,那顾名思义每个指令就是一个u1类型的单字节,当虚拟机读取到code中的一个字节码时,就可以对应找出这个字节码代表的是什么指令,并且可以知道这条指令后面是否需要跟随参数,以及后续的参数应当如何解析。我们知道一个u1数据类型的取值范围为0x00~0xFF,对应十进制的0~255,也就是一共可以表达256条指令。

关于code_length,有一件值得注意的事情,虽然它是一个u4类型的长度值,理论上最大值可以达到2的32次幂,但是《Java虚拟机规范》中明确限制了一个方法不允许超过65535条字节码指令,即它实际只使用了u2的长度,如果超过这个限制,Javac编译器就会拒绝编译。一般来讲,编写Java代码时只要不是刻意去编写一个超级长的方法来为难编译器,是不太可能超过这个最大值的限制的。

Code属性是Class文件中最重要的一个属性,如果把一个Java程序中的信息分为代码(Code,方法体里面的Java代码)和元数据(Metadata,包括类、字段、方法定义及其他信息)两部分,那么在整个Class文件里,Code属性用于描述代码,所有的其他数据项目都用于描述元数据。

这是上一节分析过的实例构造器“()”方法的Code属性(接在一起的 上一节code属性后接前面所讲的属性表结构)。它的操作数栈的最大深度和本地变量表的容量都为0x0001,字节码区域所占空间的长度为0x0005。虚拟机读取到字节码区域的长度后,按照顺序依次读入紧随的5个字节,并根据字节码指令表翻译出所对应的字节码指令。翻译“2A B7000A B1”的过程为:

1)读入2A,查表得0x2A对应的指令为aload_0,这个指令的含义是将第0个变量槽中为reference类型的本地变量推送到操作数栈顶

2)读入B7,查表得0xB7对应的指令为invokespecial,这条指令的作用是以栈顶的reference类型的数据所指向的对象作为方法接收者,调用此对象的实例构造器方法、private方法或者它的父类的方法。这个方法有一个u2类型的参数说明具体调用哪一个方法,它指向常量池中的一个 CONSTANT_Methodref_info类型常量,即此方法的符号引用。

3)读入000A,这是invokespecial指令的参数,代表一个符号引用,查常量池得0x000A对应的常量为实例构造器“()”方法的符号引用。

4)读入B1,查表得0xB1对应的指令为return,含义是从方法的返回,并且返回值为void。这条指令执行后,当前方法正常结束。

Code属性结构实例:

image-20210819082338211

这段字节码虽然很短,但我们可以从中看出它执行过程中的数据交换、方法调用等操作都是基于栈(操作数栈)的。我们可以初步猜测,Java虚拟机执行字节码应该是基于栈的体系结构。但又发现与通常基于栈的指令集里都是无参数的又不太一样,某些指令(如invokespecial)后面还会带有参数

// 原始Java代码

public class TestClass {

private int m;

public int inc() {

return m + 1;

}

}

C:>javap -verbose TestClass

// 常量表部分的输出见代码清单6-1,因版面原因这里省略掉

{

public org.fenixsoft.clazz.TestClass();

Code:

Stack=1, Locals=1, Args_size=1

0: aload_0

1: invokespecial #10; //Method java/lang/Object.""😦)V

4: return

LineNumberTable:

line 3: 0

LocalVariableTable:

Start Length Slot Name Signature

0 5 0 this Lorg/fenixsoft/clazz/TestClass;

public int inc();

Code:

Stack=2, Locals=1, Args_size=1

0: aload_01: getfield #18; //Field m:I

4: iconst_1

5: iadd

6: ireturn

LineNumberTable:

line 8: 0

LocalVariableTable:

Start Length Slot Name Signature

0 7 0 this Lorg/fenixsoft/clazz/TestClass;

}

如果大家注意到javap中输出的“Args_size”的值,可能还会有疑问:这个类有两个方法——实例构造器()和inc(),这两个方法很明显都是没有参数的,为什么Args_size会为1?而且无论是在参数列表里还是方法体内,都没有定义任何局部变量,那Locals又为什么会等于1?大概是忽略了一条Java语言里面的潜规则:在任何实例方法里面,都可以通过“this”关键字访问到此方 法所属的对象。这个访问机制对Java程序的编写很重要,而它的实现非常简单,仅仅是通过在Javac编译器编译的时候把对this关键字的访问转变为对一个普通方法参数的访问,然后在虚拟机调用实例方法 时自动传入此参数而已。因此在实例方法的局部变量表中至少会存在一个指向当前对象实例的局部变量,局部变量表中也会预留出第一个变量槽位来存放对象实例的引用,所以实例方法参数值从1开始计算。这个处理只对实例方法有效,如果代码清单6-1中的inc()方法被声明为static,那Args_size就不会等于1而是等于0了。

在字节码指令之后的是这个方法的显式异常处理表(下文简称“异常表”)集合,异常表对于Code属性来说并不是必须存在的。

如果存在异常表,那它的格式应如表所示,包含四个字段,这些字段的含义为:如果当字节码从第start_pc行[1]到第end_pc行之间(不含第end_pc行)出现了类型为catch_type或者其子类的异常(catch_type为指向一个CONSTANT_Class_info型常量的索引),则转到第handler_pc行继续处理。当catch_type的值为0时,代表任意异常情况都需要转到handler_pc处进行处理。

image-20210819085402558

异常表实际上是Java代码的一部分,尽管字节码中有最初为处理异常而设计的跳转指令,但《Java虚拟机规范》中明确要求Java语言的编译器应当选择使用异常表而不是通过跳转指令来实现Java异常及finally处理机制

异常表运作演示代码如下:

image-20210819085513589

编译器为这段Java源码生成了三条异常表记录,对应三条可能出现的代码执行路径。从Java代码的语义上讲,这三条执行路径分别为:

  • 如果try语句块中出现属于Exception或其子类的异常,转到catch语句块处理;
  • 如果try语句块中出现不属于Exception或其子类的异常,转到finally语句块处理;
  • 如果catch语句块中出现任何异常,转到finally语句块处理。

字节码中第0~4行所做的操作就是将整数1赋值给变量x,并且将此时x的值复制一份副本到最后一个本地变量表的变量槽中(这个变量槽里面的值在ireturn指令执行前将会被重新读到操作栈顶,作为方法返回值使用。为了讲解方便,笔者给这个变量槽起个名字:returnValue)。如果这时候没有出现异常,则会继续走到第5~9行,将变量x赋值为3,然后将之前保存在returnValue中的整数1读入到操作栈 顶,最后ireturn指令会以int形式返回操作栈顶中的值,方法结束。如果出现了异常,PC寄存器指针转 到第10行,第10~20行所做的事情是将2赋值给变量x,然后将变量x此时的值赋给returnValue,最后再将变量x的值改为3。方法返回前同样将returnValue中保留的整数2读到了操作栈顶。从第21行开始的代码,作用是将变量x的值赋为3,并将栈顶的异常抛出,方法结束。

2.Exception属性

这里的Exceptions属性是在方法表中与Code属性平级的一项属性,读者不要与前面刚刚讲解完的异常表产生混淆。Exceptions属性的作用是列举出方法中可能抛出的受查异常(Checked Excepitons),也就是方法描述时在throws关键字后面列举的异常。

image-20210819091417034

此属性中的number_of_exceptions项表示方法可能抛出number_of_exceptions种受查异常,每一种受查异常使用一个exception_index_table项表示;exception_index_table是一个指向常量池中CONSTANT_Class_info型常量的索引,代表了该受查异常的类型。

3.LineNumberTable属性

LineNumberTable属性用于描述Java源码行号与字节码行号(字节码的偏移量)之间的对应关系。 它并不是运行时必需的属性,但默认会生成到Class文件之中,可以在Javac中使用-g:none或-g:lines 选项来取消或要求生成这项信息。如果选择不生成LineNumberTable属性,对程序运行产生的最主要影响就是当抛出异常时,堆栈中将不会显示出错的行号,并且在调试程序的时候,也无法按照源码行来设置断点。LineNumberTable属性的结构如表

image-20210819093421827

line_number_table是一个数量为line_number_table_length、类型为line_number_info的集合,line_number_info表包含start_pc和line_number两个u2类型的数据项,前者是字节码行号,后者是Java源码行号。

4.LocalVariableTable及LocalVariableTypeTable属性

LocalVariableTable属性用于描述栈帧中局部变量表的变量与Java源码中定义的变量之间的关系,它也不是运行时必需的属性,但默认会生成到Class文件之中,可以在Javac中使用-g:none或-g:vars选项 来取消或要求生成这项信息。如果没有生成这项属性,最大的影响就是当其他人引用这个方法时,所有的参数名称都将会丢失,譬如IDE将会使用诸如arg0、arg1之类的占位符代替原有的参数名,这对程序运行没有影响,但是会对代码编写带来较大不便,而且在调试期间无法根据参数名称从上下文中获 得参数值。

image-20210819093853595

其中local_variable_info项目代表了一个栈帧与源码中的局部变量的关联,结构如表所示。

image-20210819093925620

start_pc和length属性分别代表了这个局部变量的生命周期开始的字节码偏移量及其作用范围覆盖的长度,两者结合起来就是这个局部变量在字节码之中的作用域范围。

name_index和descriptor_index都是指向常量池中CONSTANT_Utf8_info型常量的索引,分别代表了局部变量的名称以及这个局部变量的描述符。

index是这个局部变量在栈帧的局部变量表变量槽的位置。当这个变量数据类型是64位类型时(double和long),它占用的变量槽为index和index+1两个。

在JDK 5引入泛型之后,LocalVariableTable属性增加了一个“姐妹属性”LocalVariableTypeTable。这个新增的属性结构与LocalVariableTable非常相似,仅仅是把记录的字段描述符的descriptor_index替换成了字段的特征签名(Signature)。对于非泛型类型来说,描述符和特征签名能描述的信息是能吻合一致的,但是泛型引入之后,由于描述符中泛型的参数化类型被擦除掉,描述符就不能准确描述泛型类型了。因此出现了LocalVariableTypeTable属性,使用字段的特征签名来完成泛型的描述。

5.SourceFile及SourceDebugExtension属性

SourceFile属性用于记录生成这个Class文件的源码文件名称。这个属性也是可选的,可以使用Javac的-g:none或-g:source选项来关闭或要求生成这项信息。在Java中,对于大多数的类来说,类名和文件名是一致的,但是有一些特殊情况(如内部类)例外。如果不生成这项属性,当抛出异常时,堆栈中将不会显示出错代码所属的文件名。这个属性是一个定长的属性

image-20210819100654595

其中debug_extension存储的就是额外的调试信息,是一组通过变长UTF-8格式来表示的字符串。一个类中最多只允许存在一个SourceDebugExtension属性。

6.ConstantValue属性

ConstantValue属性的作用是通知虚拟机自动为静态变量赋值。只有被static关键字修饰的变量(类变量)才可以使用这项属性。类似“int x=123”和“static int x=123”这样的变量定义在Java程序里面是非常常见的事情,但虚拟机对这两种变量赋值的方式和时刻都有所不同。对非static类型的变量(也就是实例变量)的赋值是在实例构造器()方法中进行的;而对于类变量,则有两种方式可以选择:在类构造器()方法中或者使用ConstantValue属性。目前Oracle公司实现的Javac编译器的选择是,如果同时使用final和static来修饰一个变量(按照习惯,这里称“常量”更贴切),并且这个变量的数据类型是基本类型或者java.lang.String的话,就将会生成ConstantValue属性来进行初始化;如果这个变量没有被final修饰,或者并非基本类型及字符串,则将会选择在<clinit>()方法中进行初始化。

image-20210819104813424

从数据结构中可以看出ConstantValue属性是一个定长属性,它的attribute_length数据项值必须固定为2。constantvalue_index数据项代表了常量池中一个字面量常量的引用,根据字段类型的不同,字面量可以是CONSTANT_Long_info、CONSTANT_Float_info、CONSTANT_Double_info、 CONSTANT_Integer_info和CONSTANT_String_info常量中的一种。

7.3 字节码指令简介

Java虚拟机的指令由一个字节长度的、代表着某种特定操作含义的数字(称为操作码,Opcode)以及跟随其后的零至多个代表此操作所需的参数(称为操作数,Operand)构成。由于Java虚拟机采用面向操作数栈而不是面向寄存器的架构(这两种架构的执行过程、区别和影响将在第8章中探讨),所以大多数指令都不包含操作数,只有一个操作码,指令参数都存放在操作数栈中。

字节码指令集可算是一种具有鲜明特点、优势和劣势均很突出的指令集架构,由于限制了Java虚拟机操作码的长度为一个字节(即0~255),这意味着指令集的操作码总数不能够超过256条;又由于Class文件格式放弃了编译后代码的操作数长度对齐,这就意味着虚拟机在处理那些超过一个字节的数据时,不得不在运行时从字节中重建出具体数据的结构,譬如要将一个16位长度的无符号整数使用两个无符号字节存储起来(假设将它们命名为byte1和byte2),那它们的值应该是这样的:(byte1<<8)|byte2

这种操作在某种程度上会导致解释执行字节码时将损失一些性能,但这样做的优势也同样明显:放弃了操作数长度对齐,就意味着可以省略掉大量的填充和间隔符号;用一个字节来代表操作码,也是为了尽可能获得短小精干的编译代码。(这种设计方法设计之初主要面向网络设计 尽可能小数据量、高传输效率)

如果不考虑异常处理的话,那Java虚拟机的解释器可以使用下面这段伪代码作为最基本的执行模型来理解,这个执行模型虽然很简单,但依然可以有效正确地工作:

do {
	自动计算PC寄存器的值加1; 
	根据PC寄存器指示的位置,从字节码流中取出操作码; 
	if (字节码存在操作数) 从字节码流中取出操作数; 
	执行操作码所定义的操作; 
} while (字节码流长度 > 0);
7.3.1 字节码和数据类型

在Java虚拟机的指令集中,大多数指令都包含其操作所对应的数据类型信息。举个例子,iload指令用于从局部变量表中加载int型的数据到操作数栈中,而fload指令加载的则是float类型的数据。这两条指令的操作在虚拟机内部可能会是由同一段代码来实现的,但在Class文件中它们必须拥有各自独立的操作码。

i代表对int类型的数据操作、l代表long、a代表reference

因为Java虚拟机的操作码长度只有一字节,所以包含了数据类型的操作码就为指令集的设计带来了很大的压力:如果每一种与数据类型相关的指令都支持Java虚拟机所有运行时数据类型的话,那么 指令的数量恐怕就会超出一字节所能表示的数量范围了。因此,Java虚拟机的指令集对于特定的操作 只提供了有限的类型相关指令去支持它,换句话说,指令集将会被故意设计成非完全独立的。(《Java虚拟机规范》中把这种特性称为“Not Orthogonal”,即并非每种数据类型和每一种操作都有对应的指令。)有一些单独的指令可以在必要的时候用来将一些不支持的类型转换为可被支持的类型。

下表列举了Java虚拟机所支持的与数据类型相关的字节码指令,通过使用数据类型列所代表的特殊字符替换opcode列的指令模板中的T,就可以得到一个具体的字节码指令。如果在表中指令模板与数据类型两列共同确定的格为空,则说明虚拟机不支持对这种数据类型执行这项操作。例如load指令有操作int类型的iload,但是没有操作byte类型的同类指令。

image-20210819202339075

image-20210819202346998

大部分指令都没有支持整数类型byte、char和short,甚至没有任何指令支持boolean类型。编译器会在编译期或运行期将byte和short类型的数据带符号扩展(Sign-Extend)为相应的int类型数据,将boolean和char类型数据零位扩展(Zero-Extend)为相应的int类型数据。与之类似,在处理boolean、byte、short和char类型的数组时,也会转换为使用对应的int类型的字节码指令来处理。因此,大多数对于boolean、byte、short和char类型数据的操作,实际上都是使用相应的对int类型作为运算类型(Computational Type)来进行的。

7.3.2 加载和存储指令

加载和存储指令用于将数据在栈帧中的局部变量表和操作数栈(见第2章关于内存区域的介绍)之间来回传输,这类指令包括:

  • 将一个局部变量加载到操作栈:iload、iload_、lload、lload_、fload、fload_、dload、 dload_、aload、aload_
  • 将一个数值从操作数栈存储到局部变量表:istore、istore_、lstore、lstore_、fstore、 fstore_、dstore、dstore_、astore、astore_
  • 将一个常量加载到操作数栈:bipush、sipush、ldc、ldc_w、ldc2_w、aconst_null、iconst_m1、 iconst_、lconst_、fconst_、dconst_
  • 扩充局部变量表的访问索引的指令:wide

存储数据的操作数栈和局部变量表主要由加载和存储指令进行操作,除此之外,还有少量指令,如访问对象的字段或数组元素的指令也会向操作数栈传输数据。

7.3.3 运算指令

算术指令用于对两个操作数栈上的值进行某种特定运算,并把结果重新存入到操作栈顶。大体上运算指令可以分为两种:对整型数据进行运算的指令与对浮点型数据进行运算的指令。整数与浮点数的算术指令在溢出和被零除的时候也有各自不同的行为表现。无论是哪种算术指令,均是使用Java虚拟机的算术类型来进行计算的,换句话说是不存在直接支持byte、short、char和boolean类型的算术指令,对于上述几种数据的运算,应使用操作int类型的指令代替。

《Java虚拟机规范》要求虚拟机实现在处理浮点数时,必须严格遵循IEEE 754规范中所规定行为和限制,也就是说Java虚拟机必须完全支持IEEE 754中定义的“非正规浮点数值”(Denormalized Floating-Point Number)和“逐级下溢”(Gradual Underflow)的运算规则。这些规则将会使某些数值算法处理起来变得明确,不会出现模棱两可的困境。譬如以上规则要求Java虚拟机在进行浮点数运算时,所有的运算结果都必须舍入到适当的精度,非精确的结果必须舍入为可被表示的最接近的精确值;如果有两种可表示的形式与该值一样接近,那将优先选择最低有效位为零的。这种舍入模式也是IEEE 754规范中的默认舍入模式,称为向最接近数舍入模式。而在把浮点数转换为整数时,Java虚拟机使用IEEE 754标准中的向零舍入模式,这种模式的舍入结果会导致数字被截断,所有小数部分的有效字节都会被丢弃掉。向零舍入模式将在目标数值类型中选择一个最接近,但是不大于原值的数字来作为最精确的舍入结果。

Java虚拟机在处理浮点数运算时,不会抛出任何运行时异常,当一个操作产生溢出时,将会使用有符号的无穷大来表示;如果某个操作结果没有明确的数学定义的话,将会使用NaN(Not a Number)值来表示。所有使用NaN值作为操作数的算术操作,结果都会返回NaN。

在对long类型数值进行比较时,Java虚拟机采用带符号的比较方式,而对浮点数值进行比较时(dcmpg、dcmpl、fcmpg、fcmpl),虚拟机会采用IEEE 754规范所定义的无信号比较(Nonsignaling Comparison)方式进行。

7.3.4 类型转换指令

类型转换指令可以将两种不同的数值类型相互转换,这些转换操作一般用于实现用户代码中的显式类型转换操作,或者用来处理本节开篇所提到的字节码指令集中数据类型相关指令无法与数据类型一一对应的问题。

Java虚拟机直接支持(即转换时无须显式的转换指令)以下数值类型的宽化类型转换(WideningNumeric Conversion,即小范围类型向大范围类型的安全转换):

  • int类型到long、float或者double类型
  • long类型到float、double类型
  • float类型到double类型

int->long->float->double

与之相对的,处理窄化类型转换(Narrowing Numeric Conversion)时,就必须显式地使用转换指令来完成,这些转换指令包括i2b、i2c、i2s、l2i、f2i、f2l、d2i、d2l和d2f。窄化类型转换可能会导致转换结果产生不同的正负号、不同的数量级的情况,转换过程很可能会导致数值的精度丢失。

Java虚拟机将一个浮点值窄化转换为整数类型T(T限于int或long类型之一)的时候,必须遵循以下转换规则:

  • 如果浮点值是NaN,那转换结果就是int或long类型的0。
  • 如果浮点值不是无穷大的话,浮点值使用IEEE 754的向零舍入模式取整,获得整数值v。如果v在目标类型T(int或long)的表示范围之类,那转换结果就是v;否则,将根据v的符号,转换为T所能表示的最大或者最小正数。

从double类型到float类型做窄化转换的过程与IEEE 754中定义的一致,通过IEEE 754向最接近数舍入模式舍入得到一个可以使用float类型表示的数字。如果转换结果的绝对值太小、无法使用float来表示的话,将返回float类型的正负零;如果转换结果的绝对值太大、无法使用float来表示的话,将返回float类型的正负无穷大。对于double类型的NaN值将按规定转换为float类型的NaN值。

尽管数据类型窄化转换可能会发生上限溢出、下限溢出和精度丢失等情况,但是《Java虚拟机规范》中明确规定数值类型的窄化转换指令永远不可能导致虚拟机抛出运行时异常。

7.3.5 对象创建和访问指令

虽然类实例和数组都是对象,但Java虚拟机对类实例和数组的创建与操作使用了不同的字节码指令。对象创建后,就可以通过对象访问指令获取对象实例或者数组实例中的字段或者数组元素,这些指令包括:

  • 创建类实例的指令:new
  • 创建数组的指令:newarray、anewarray、multianewarray
  • 访问类字段(static字段,或者称为类变量)和实例字段(非static字段,或者称为实例变量)的指令:getfield、putfield、getstatic、putstatic
  • 把一个数组元素加载到操作数栈的指令:baload、caload、saload、iaload、laload、faload、daload、aaload
  • 将一个操作数栈的值储存到数组元素中的指令:bastore、castore、sastore、iastore、fastore、dastore、aastore
  • 取数组长度的指令:arraylength
  • 检查类实例类型的指令:instanceof、checkcast
7.3.6 操作数栈管理指令

如同操作一个普通数据结构中的堆栈那样,Java虚拟机提供了一些用于直接操作操作数栈的指令,包括:

  • 将操作数栈的栈顶一个或两个元素出栈:pop、pop2
  • 复制栈顶一个或两个数值并将复制值或双份的复制值重新压入栈顶:dup、dup2、dup_x1、dup2_x1、dup_x2、dup2_x2
  • 将栈最顶端的两个数值互换:swap
7.3.7 控制转移指令

控制转移指令可以让Java虚拟机有条件或无条件地从指定位置指令(而不是控制转移指令)的下一条指令继续执行程序,从概念模型上理解,可以认为控制指令就是在有条件或无条件地修改PC寄存器的值。控制转移指令包括:

  • 条件分支:ifeq、iflt、ifle、ifne、ifgt、ifge、ifnull、ifnonnull、if_icmpeq、if_icmpne、if_icmplt、if_icmpgt、if_icmple、if_icmpge、if_acmpeq和if_acmpne
  • 复合条件分支:tableswitch、lookupswitch
  • 无条件分支:goto、goto_w、jsr、jsr_w、ret

在Java虚拟机中有专门的指令集用来处理int和reference类型的条件分支比较操作,为了可以无须明显标识一个数据的值是否null,也有专门的指令用来检测null值。

与前面算术运算的规则一致,对于boolean类型、byte类型、char类型和short类型的条件分支比较操作,都使用int类型的比较指令来完成,而对于long类型、float类型和double类型的条件分支比较操 作,则会先执行相应类型的比较运算指令(dcmpg、dcmpl、fcmpg、fcmpl、lcmp),运算指令会返回一个整型值到操作数栈中,随后再执行int类型的条件分支比较操作来完成整个分支跳转。由于各种类型的比较最终都会转化为int类型的比较操作,int类型比较是否方便、完善就显得尤为重要,而Java虚拟机提供的int类型的条件分支指令是最为丰富、强大的。

7.3.8 方法调用和返回指令

这里仅列举以下五条指令用于方法调用:

  • invokevirtual指令:用于调用对象的实例方法,根据对象的实际类型进行分派(虚方法分派),这也是Java语言中最常见的方法分派方式。
  • invokeinterface指令:用于调用接口方法,它会在运行时搜索一个实现了这个接口方法的对象,找出适合的方法进行调用。
  • invokespecial指令:用于调用一些需要特殊处理的实例方法,包括实例初始化方法、私有方法和父类方法
  • invokestatic指令:用于调用类静态方法(static方法)。
  • invokedynamic指令:用于在运行时动态解析出调用点限定符所引用的方法。并执行该方法。前面四条调用指令的分派逻辑都固化在Java虚拟机内部,用户无法改变,而invokedynamic指令的分派逻辑是由用户所设定的引导方法决定的。

方法调用指令与数据类型无关,而方法返回指令是根据返回值的类型区分的,包括ireturn(当返回值是boolean、byte、char、short和int类型时使用)、lreturn、freturn、dreturn和areturn,另外还有一条return指令供声明为void的方法、实例初始化方法、类和接口的类初始化方法使用。

7.3.9 异常处理指令

而在Java虚拟机中,处理异常(catch语句)不是由字节码指令来实现的(很久之前曾经使用jsr和ret指令来实现,现在已经不用了),而是采用异常表来完成。

7.3.10 同步指令

Java虚拟机可以支持方法级的同步方法内部一段指令序列的同步,这两种同步结构都是使用管程(Monitor,更常见的是直接将它称为“锁”)来实现的。

方法级的同步是隐式的,无须通过字节码指令来控制,它实现在方法调用和返回操作之中。虚拟机可以从方法常量池中的方法表结构中的ACC_SYNCHRONIZED访问标志得知一个方法是否被声明为同步方法。当方法调用时,调用指令将会检查方法的ACC_SYNCHRONIZED访问标志是否被设置,如果设置了,执行线程就要求先成功持有管程,然后才能执行方法,最后当方法完成(无论是正常完成 还是非正常完成)时释放管程。在方法执行期间,执行线程持有了管程,其他任何线程都无法再获取到同一个管程。如果一个同步方法执行期间抛出了异常,并且在方法内部无法处理此异常,那这个同步方法所持有的管程将在异常抛到同步方法边界之外时自动释放。

同步一段指令集序列通常是由Java语言中的synchronized语句块来表示的,Java虚拟机的指令集中有monitorentermonitorexit两条指令来支持synchronized关键字的语义,正确实现synchronized关键字需要Javac编译器与Java虚拟机两者共同协作支持。

void onlyMe(Foo f) 
{ 
	synchronized(f) 
	{ 
		doSomething(); 
	} 
}

编译后生成的字节码序列如下:

image-20210820091226577

编译器必须确保无论方法通过何种方式完成,方法中调用过的每条monitorenter指令都必须有其对应的monitorexit指令,而无论这个方法是正常结束还是异常结束。

从字节码序列中可以看到,为了保证在方法异常完成时monitorenter和monitorexit指令依然可以正确配对执行,编译器会自动产生一个异常处理程序,这个异常处理程序声明可处理所有的异常,它的目的就是用来执行monitorexit指令

7.4 公有设计,私有实现

Java虚拟机应有的共同程序存储格式:Class文件格式以及字节码指令集。

虚拟机实现者可以使用这种伸缩性来让Java虚拟机获得更高的性能、更低的内存消耗或者更好的可移植性,选择哪种特性取决于Java虚拟机实现的目标和关注点是什么,虚拟机实现的方式主要有以下两种:

  • 将输入的Java虚拟机代码在加载时或执行时翻译成另一种虚拟机的指令集;
  • 将输入的Java虚拟机代码在加载时或执行时翻译成宿主机处理程序的本地指令集(即即时编译器代码生成技术)。

7.5 Class文件结构的发展

Class文件结构一直处于一个相对比较稳定的状态,Class文件的主体结构、字节码指令的语义和数量几乎没有出现过变动,所有对Class文件格式的改进,都集中在访问标志、属性表这些设计上原本就是可扩展的数据结构中添加新内容。

Class文件格式所具备的平台中立(不依赖于特定硬件及操作系统)、紧凑、稳定和可扩展的特点,是Java技术体系实现平台无关、语言无关两项特性的重要支柱。

8 虚拟机类加载机制

代码编译的结果从本地机器码转变为字节码,是存储格式发展的一小步,却是编程语言发展的一大步。

Java虚拟机把描述类的数据从Class文件加载到内存,并对数据进行校验、转换解析和初始化,最终形成可以被虚拟机直接使用的Java类型,这个过程被称作虚拟机的类加载机制。与那些在编译时需要进行连接的语言不同,在Java语言里面,类型的加载、连接和初始化过程都是在程序运行期间完成的,这种策略让Java语言进行提前编译会面临额外的困难,也会让类加载时稍微增加一些性能开销, 但是却为Java应用提供了极高的扩展性和灵活性,Java天生可以动态扩展的语言特性就是依赖运行期动态加载和动态连接这个特点实现的

例如,编写一个面向接口的应用程序,可以等到运行时再指定其实际的实现类,用户可以通过Java预置的或自定义类加载器,让某个本地的应用程序在运行时从网络或其他地方上加载一个二进制流作为其程序代码的一部分。

“Class文件”也并非特指某个存在于具体磁盘中的文件,而应当是一串二进制字节流,无论其以何种形式存在,包括但不限于磁盘文件、网络、数据库、内存或者动态产生等。

8.1 类加载的时机

一个类型从被加载到虚拟机内存中开始,到卸载出内存为止,它的整个生命周期将会经历加载 (Loading)、验证(Verification)、准备(Preparation)、解析(Resolution)、初始化(Initialization)、使用(Using)和卸载(Unloading)七个阶段,其中验证、准备、解析三个部分统称为连接(Linking)。

image-20210820101333496

加载、验证、准备、初始化和卸载这五个阶段的顺序是确定的,类型的加载过程必须按照这种顺序按部就班地开始,而解析阶段则不一定:它在某些情况下可以在初始化阶段之后再开始,这是为了支持Java语言的运行时绑定特性(也称为动态绑定或晚期绑定)。请注意,这里笔者写的是按部就班地**“开始”**,而不是按部就班地“进行”或按部就班地“完成”,强调这点是因为这些阶段通常都是互相交叉地混合进行的,会在一个阶段执行的过程中调用、激活另一个阶段。

关于在什么情况下需要开始类加载过程的第一个阶段“加载”,《Java虚拟机规范》中并没有进行强制约束,这点可以交给虚拟机的具体实现来自由把握。但是对于初始化阶段,《Java虚拟机规范》 则是严格规定了有且只有六种情况必须立即对类进行**“初始化”**(而加载、验证、准备自然需要在此之前开始): “有且只有”,这六种场景中的行为称为对一个类型进行主动引用

  1. 遇到new、getstatic、putstatic或invokestatic这四条字节码指令时,如果类型没有进行过初始化,则需要先触发其初始化阶段。能够生成这四条指令的典型Java代码场景有:
    • 使用new关键字实例化对象的时候。
    • 读取或设置一个类型的静态字段(被final修饰、已在编译期把结果放入常量池的静态字段除外)的时候。
    • 调用一个类型的静态方法的时候。
  2. 使用java.lang.reflect包的方法对类型进行反射调用的时候,如果类型没有进行过初始化,则需要先触发其初始化。
  3. 当初始化类的时候,如果发现其父类还没有进行过初始化,则需要先触发其父类的初始化。
  4. 当虚拟机启动时,用户需要指定一个要执行的主类(包含main()方法的那个类),虚拟机会先初始化这个主类
  5. 当使用JDK 7新加入的动态语言支持时,如果一个java.lang.invoke.MethodHandle实例最后的解析结果为REF_getStatic、REF_putStatic、REF_invokeStatic、REF_newInvokeSpecial四种类型的方法句柄,并且这个方法句柄对应的类没有进行过初始化,则需要先触发其初始化。
  6. 当一个接口中定义了JDK 8新加入的默认方法(被default关键字修饰的接口方法)时,如果有这个接口的实现类发生了初始化,那该接口要在其之前被初始化。

这六种场景中的行为称为对一个类型进行主动引用:

package org.fenixsoft.classloading; 
/*** 被动使用类字段演示一: * 通过子类引用父类的静态字段,不会导致子类初始化 **/ 
public class SuperClass { 
static { System.out.println("SuperClass init!"); }
public static int value = 123; 
}
public class SubClass extends SuperClass { 
static { System.out.println("SubClass init!"); } 
}
/*** 非主动使用类字段演示 **/ 
public class NotInitialization { 
public static void main(String[] args) { 				 	System.out.println(SubClass.value); 
	} 
}

上述代码运行之后,只会输出“SuperClass init!”,而不会输出“SubClass init!”。对于静态字段,只有直接定义这个字段的类才会被初始化,因此通过其子类来引用父类中定义的静态字段,只会触发父类的初始化而不会触发子类的初始化。至于是否要触发子类的加载和验证阶段,在《Java虚拟机规范》中并未明确规定,所以这点取决于虚拟机的具体实现。对于HotSpot虚拟机来说,可通过-XX:+TraceClassLoading参数观察到此操作是会导致子类加载的。

package org.fenixsoft.classloading; 
/*** 被动使用类字段演示二: * 通过数组定义来引用类,不会触发此类的初始化 **/ 
public class NotInitialization 
{ 
	public static void main(String[] args) 
	{ 
		SuperClass[] sca = new SuperClass[10]; 
	} 
}

运行之后发现没有输出“SuperClass init!”,说明并没有触发类org.fenixsoft.classloading.SuperClass的初始化阶段。但是这段代码里面触发了另一个名为“[Lorg.fenixsoft.classloading.SuperClass”的类的初始化阶段,对于用户代码来说,这并不是一个合法的类型名称,它是一个由虚拟机自动生成的、直接继承于java.lang.Object的子类,创建动作由 字节码指令newarray触发。

这个类代表了一个元素类型为org.fenixsoft.classloading.SuperClass的一维数组,数组中应有的属性 和方法(用户可直接使用的只有被修饰为public的length属性和clone()方法)都实现在这个类里。Java语 言中对数组的访问要比C/C++相对安全,很大程度上就是因为这个类包装了数组元素的访问,而C/C++中则是直接翻译为对**数组指针的移动。**在Java语言里,检查到发生数组越界时会抛出 java.lang.ArrayIndexOutOfBoundsException异常,避免了直接造成非法内存访问。

package org.fenixsoft.classloading; 
/*** 被动使用类字段演示三: * 常量在编译阶段会存入调用类的常量池中,本质上没有直接引用到定义常量的类,因此不会触发定义常量的 类的初始化 **/ 
public class ConstClass { 
	static { System.out.println("ConstClass init!"); }
	public static final String HELLOWORLD = "hello world"; 
	}
	/*** 非主动使用类字段演示 **/ 
	public class NotInitialization { 
	public static void main(String[] args) 
	{ System.out.println(ConstClass.HELLOWORLD); } 
}

上述代码运行之后,也没有输出“ConstClass init!”,这是因为虽然在Java源码中确实引用了ConstClass类的常量HELLOWORLD,但其实在编译阶段通过常量传播优化,已经将此常量的值“hello world”直接存储在NotInitialization类的常量池中,以后NotInitialization对常量ConstClass.HELLOWORLD的引用,实际都被转化为NotInitialization类对自身常量池的引用了。也就是说,实际上NotInitialization的Class文件之中并没有ConstClass类的符号引用入口,这两个类在编译成Class文件后就已不存在任何联系了。

接口的加载过程与类加载过程稍有不同,针对接口需要做一些特殊说明:接口也有初始化过程,这点与类是一致的,上面的代码都是用静态语句块“static{}”来输出初始化信息的,而接口中不能使用“static{}”语句块但编译器仍然会为接口生成“<clinit>()”类构造器,用于初始化接口中所定义的成员变量。接口与类真正有所区别的是前面讲述的六种“有且仅有”需要触发初始化场景中的第三种:当一个类在初始化时,要求其父类全部都已经初始化过了,但是一个接口在初始化时,并不要求其父接口全部都完成了初始化,只有在真正使用到父接口的时候(如引用接口中定义的常量)才会初始化。

(越界检查不是封装在数组元素访问的类中,而是封装在数组访问的xaload、xastore字节码指令中。 )

8.2 类加载的过程

8.2.1 加载

在加载阶段,Java虚拟机需要完成以下三件事情:

  • 通过一个类的全限定名来获取定义此类的二进制字节流。
  • 将这个字节流所代表的静态存储结构转化为方法区的运行时数据结构。
  • 内存中生成一个代表这个类的java.lang.Class对象,作为方法区这个类的各种数据的访问入口。

相对于类加载过程的其他阶段,非数组类型的加载阶段(准确地说,是加载阶段中获取类的二进制字节流的动作)是开发人员可控性最强的阶段。加载阶段既可以使用Java虚拟机里内置的引导类加载器来完成,也可以由用户自定义的类加载器去完成,开发人员通过定义自己的类加载器去控制字节流的获取方式(重写一个类加载器的findClass()或loadClass()方法),实现根据自己的想法来赋予应用程序获取运行代码的动态性。

对于数组类而言,情况就有所不同,数组“类”([L)本身不通过类加载器创建,它是由Java虚拟机直接在内存中动态构造出来的。但数组类与类加载器仍然有很密切的关系,因为数组类的元素类型(ElementType,指的是数组去掉所有维度的类型)最终还是要靠类加载器来完成加载,一个数组类(下面简称为C)创建过程遵循以下规则:

  • 如果数组的组件类型(Component Type,指的是数组去掉一个维度的类型,注意和前面的元素类型区分开来)是引用类型,那就递归采用本节中定义的加载过程去加载这个组件类型,数组C将被标识在加载该组件类型的类加载器的类名称空间上。(一个类型必须与类加载器一起确定唯一性)
  • 如果数组的组件类型不是引用类型(例如int[]数组的组件类型为int),Java虚拟机将会把数组C标记为与引导类加载器关联
  • 数组类的可访问性与它的组件类型的可访问性一致,如果组件类型不是引用类型,它的数组类的可访问性将默认为public,可被所有的类和接口访问到。

加载阶段结束后,Java虚拟机外部的二进制字节流就按照虚拟机所设定的格式存储在方法区之中了,方法区中的数据存储格式完全由虚拟机实现自行定义,《Java虚拟机规范》未规定此区域的具体数据结构。类型数据妥善安置在方法区之后,会在Java堆内存中实例化一个java.lang.Class类的对象,这个对象将作为程序访问方法区中的类型数据的外部接口。 加载阶段与连接阶段的部分动作(如一部分字节码文件格式验证动作)是交叉进行的,加载阶段尚未完成,连接阶段可能已经开始,但这些夹在加载阶段之中进行的动作,仍然属于连接阶段的一部分,这两个阶段的开始时间仍然保持着固定的先后顺序

8.2.2 验证

验证是连接阶段的第一步,这一阶段的目的是确保Class文件的字节流中包含的信息符合《Java虚拟机规范》的全部约束要求,保证这些信息被当作代码运行后不会危害虚拟机自身的安全。

验证字节码(因为字节码文件是jvm识别的类型 但它不一定是由Java程序编译得来,可以直接用01输入形成class文件的二进制码,这样在Java程序中可能会拒绝编译的操作,在class文件里有必要重新检查一次 因其不一定是java编译通过的)是Java虚拟机保护自身的一项必要措施。

验证阶段大致上会完成下面四个阶段的检验动作:文件格式验证、元数据验证、字节码验证和符号引用验证。

  • 文件格式验证

    该验证阶段的主要目的是保证输入的字节流能正确地解析并存储于方法区之内,格式上符合描述一个Java类型信息的要求。这阶段的验证是基于二进制字节流进行的,只有通过了这个阶段的验证之后,这段字节流才被允许进入Java虚拟机内存的方法区中进行存储,所以后面的三个验证阶段全部是基于方法区的存储结构上进行的,不会再直接读取、操作字节流了。

  • 元数据验证

    第二阶段是对字节码描述的信息进行语义分析,以保证其描述的信息符合《Java语言规范》的要求,这个阶段可能包括的验证点如下:

    这个类是否有父类(除了java.lang.Object之外,所有的类都应当有父类)。

    这个类的父类是否继承了不允许被继承的类(被final修饰的类)。

  • 字节码验证

    第三阶段是整个验证过程中最复杂的一个阶段,主要目的是通过数据流分析和控制流分析,确定程序语义是合法的、符合逻辑的。在第二阶段对元数据信息中的数据类型校验完毕以后,这阶段就要对类的方法体(Class文件中的Code属性)进行校验分析,保证被校验类的方法在运行时不会做出危害虚拟机安全的行为。

    (保证任意时刻操作数栈的数据类型与指令代码序列都能配合工作,例如不会出现类似于“在操作栈放置了一个int类型的数据,使用时却按long类型来加载入本地变量表中”这样的情况。)

    由于数据流分析和控制流分析的高度复杂性,Java虚拟机的设计团队为了避免过多的执行时间消耗在字节码验证阶段中,在JDK 6之后的Javac编译器和Java虚拟机里进行了一项联合优化,把尽可能多的校验辅助措施挪到Javac编译器里进行。具体做法是给方法体Code属性的属性表中新增加了一项名 为“StackMapTable”的新属性,这项属性描述了方法体所有的基本块(Basic Block,指按照控制流拆分的代码块)开始时本地变量表和操作栈应有的状态,在字节码验证期间,Java虚拟机就不需要根据程序推导这些状态的合法性,只需要检查StackMapTable属性中的记录是否合法即可。这样就将字节码验证的类型推导转变为类型检查,从而节省了大量校验时间。

  • 符号引用验证

    最后一个阶段的校验行为发生在虚拟机将符号引用转化为直接引用的时候,这个转化动作将在连接的第三阶段——解析阶段中发生。符号引用验证可以看作是对类自身以外(常量池中的各种符号引用)的各类信息进行匹配性校验,通俗来说就是,该类是否缺少或者被禁止访问它依赖的某些外部类、方法、字段等资源。

8.2.3 准备

准备阶段是正式为类中定义的变量(即静态变量,被static修饰的变量)分配内存并设置类变量初始值的阶段,从概念上讲,这些变量所使用的内存都应当在方法区中进行分配,但必须注意到方法区本身是一个逻辑上的区域,在JDK 7及之前,HotSpot使用永久代来实现方法区时,实现是完全符合这种逻辑概念的;而在JDK 8及之后,类变量则会随着Class对象一起存放在Java堆中,这时候“类变量在方法区”就完全是一种对逻辑概念的表述了

关于准备阶段,还有两个容易产生混淆的概念笔者需要着重强调,首先是这时候进行内存分配的仅包括类变量,而不包括实例变量,实例变量将会在对象实例化时随着对象一起分配在Java堆中。其次是这里所说的初始值“通常情况”下是数据类型的零值,假设一个类变量的定义为:

public static int value = 2123;

那变量value在准备阶段过后的初始值为0而不是123,因为这时尚未开始执行任何Java方法,而把value赋值为123的putstatic指令是程序被编译后,存放于类构造器()方法之中,所以把value赋值为123的动作要到类的初始化阶段才会被执行。

clinit与init方法的区别:

< clinit>:在jvm第一次加载class文件时调用,包括静态变量初始化语句和静态块的执行

< init>:在实例创建出来的时候调用,包括调用new操作符;调用Class或java.lang.reflect.Constructor对象的newInstance()方法;调用任何现有对象的clone()方法;通过java.io.ObjectInputStream类的getObject()方法反序列化。

(1)< clinit>()方法是由编译器自动收集类中的所有类变量的赋值动作和静态语句块(static)中的语句合并产生的,编译器收集的顺序是由语句在源文件中出现的顺序所决定的,静态语句块只能访问到定义在静态语句块之前的变量,在他之后的变量,在前面的静态语句块中可以赋值但不能访问。

(2)< clinit>()方法与类的构造函数(或者说实例构造器中的< init>()方法)不同, 它不需要显示的调用父类构造器,虚拟机会保证在子类的< init>()方法执行之前,父类的< clinit>()方法已经执行完毕。因为在虚拟机中第一个被执行的< clinit>()方法的类肯定是java.lang.Object。

(3)由于父类的< clinit>()方法先执行,也就意味着父类中定义的静态语句块要优先于子类类的变量赋值操作。

(4)< clinit>()方法对于类或者接口来说并不是必须的,如果一个类没有静态语句块,也就没有变量的赋值操作,那么编译器可以不为这个类生成< clinit>()方法。

(5)接口中不能使用静态语句块,但仍然可以有变量初始化的赋值操作,因此接口与类一样都会生成< clinit>()方法。但接口与类不同,执行接口的< clinit>()方法不需要先执行父接口的< clinit>()方法。只有当父接口中定义的变量使用时,父接口才会初始化。另外,接口的实现类在初始化时也一样不会执行接口的< clinit>()方法。

(6)虚拟机会保证一个类的< clinit>()方法在多线程环境中被正确地加锁、同步,如果多个线程同时去初始化一个类,那么只有一个线程去执行这个类的< clinit>()方法中有耗时很长的操作,就可能造成多个线程阻塞。

image-20210824074215716

上面提到在“通常情况”下初始值是零值,那言外之意是相对的会有某些“特殊情况”:如果类字段的字段属性表中存在ConstantValue属性,那在准备阶段变量值就会被初始化为ConstantValue属性所指定的初始值,假设上面类变量value的定义修改为:

public static final int value = 123;

编译时Javac将会为value生成ConstantValue属性,在准备阶段虚拟机就会根据Con-stantValue的设置将value赋值为123。

8.2.4 解析

解析阶段是Java虚拟机将常量池内的符号引用替换为直接引用的过程。

  • 符号引用(Symbolic References):符号引用以一组符号来描述所引用的目标,符号可以是任何形式的字面量,只要使用时能无歧义地定位到目标即可。符号引用与虚拟机实现的内存布局无关,引用的目标并不一定是已经加载到虚拟机内存当中的内容。各种虚拟机实现的内存布局可以各不相同,但是它们能接受的符号引用必须都是一致的,因为符号引用的字面量形式明确定义在《Java虚拟机规范》的Class文件格式中。
  • 直接引用(Direct References):直接引用是可以直接指向目标的指针、相对偏移量或者是一个能间接定位到目标的句柄。直接引用是和虚拟机实现的内存布局直接相关的,同一个符号引用在不同虚拟机实例上翻译出来的直接引用一般不会相同。如果有了直接引用,那引用的目标必定已经在虚拟机的内存中存在。

《Java虚拟机规范》之中并未规定解析阶段发生的具体时间,只要求了在执行anewarray、 checkcast、getfield、getstatic、instanceof、invokedynamic、invokeinterface、invokespecial、 invokestatic、invokevirtual、ldc、ldc_w、ldc2_w、multianewarray、new、putfield和putstatic这17个用于操作符号引用的字节码指令之前,先对它们所使用的符号引用进行解析。所以虚拟机实现可以根据需要来自行判断,到底是在类被加载器加载时就对常量池中的符号引用进行解析,还是等到一个符号引用将要被使用前才去解析它

对同一个符号引用进行多次解析请求是很常见的事情,除invokedynamic指令以外,虚拟机实现可以对第一次解析的结果进行缓存,譬如在运行时直接引用常量池中的记录,并把常量标识为已解析状态,从而避免解析动作重复进行。无论是否真正执行了多次解析动作,Java虚拟机都需要保证的是在同一个实体中,如果一个符号引用之前已经被成功解析过,那么后续的引用解析请求就应当一直能够成功;同样地,如果第一次解析失败了,其他指令对这个符号的解析请求也应该收到相同的异常,哪怕这个请求的符号在后来已成功加载进Java虚拟机内存之中。

不过对于invokedynamic指令,上面的规则就不成立了。当碰到某个前面已经由invokedynamic指令触发过解析的符号引用时,并不意味着这个解析结果对于其他invokedynamic指令也同样生效。因为invokedynamic指令的目的本来就是用于动态语言支持,它对应的引用称为“动态调用点限定符(Dynamically-Computed Call Site Specifier)”,这里“动态”的含义是指必须等到程序实际运行到这条指令时,解析动作才能进行。相对地,其余可触发解析的指令都是“静态”的,可以在刚刚完成加载阶段,还没有开始执行代码时就提前进行解析。

解析动作主要针对类或接口、字段、类方法、接口方法、方法类型、方法句柄和调用点限定符这7类符号引用进行,分别对应于常量池的CONSTANT_Class_info、CONSTANT_Fieldref_info、 CONSTANT_Methodref_info、CONSTANT_InterfaceMethodref_info、CONSTANT_MethodType_info、CONSTANT_MethodHandle_info、CONSTANT_Dynamic_info和CONSTANT_InvokeDynamic_info 8种常量类型

8.2.4.1 类或接口的解析

假设当前代码所处的类为D,如果要把一个从未解析过的符号引用N解析为一个类或接口C的直接引用,那虚拟机完成整个解析的过程需要包括以下3个步骤:

1)如果C不是一个数组类型,那虚拟机将会把代表N的全限定名传递给D的类加载器去加载这个类C。在加载过程中,由于元数据验证、字节码验证的需要,又可能触发其他相关类的加载动作,例如加载这个类的父类或实现的接口。一旦这个加载过程出现了任何异常,解析过程就将宣告失败。

2)如果C是一个数组类型,并且数组的元素类型为对象,也就是N的描述符会是类似“[Ljava/lang/Integer”的形式,那将会按照第一点的规则加载数组元素类型。如果N的描述符如前面所假设的形式,需要加载的元素类型就是“java.lang.Integer”,接着由虚拟机生成一个代表该数组维度和元 素的数组对象。

3)如果上面两步没有出现任何异常,那么C在虚拟机中实际上已经成为一个有效的类或接口了,但在解析完成前还要进行符号引用验证,确认D是否具备对C的访问权限。如果发现不具备访问权限,将抛出java.lang.IllegalAccessError异常。

针对上面第3点访问权限验证,在JDK 9引入了模块化以后,一个public类型也不再意味着程序任何位置都有它的访问权限,我们还必须检查模块间的访问权限。 如果我们说一个D拥有C的访问权限,那就意味着以下3条规则中至少有其中一条成立:

  • 被访问类C是public的,并且与访问类D处于同一个模块。
  • 被访问类C是public的,不与访问类D处于同一个模块,但是被访问类C的模块允许被访问类D的模块进行访问。
  • 被访问类C不是public的,但是它与访问类D处于同一个包中。
8.2.4.2 字段解析

要解析一个未被解析过的字段符号引用,首先将会对字段表内class_index项中索引的CONSTANT_Class_info符号引用进行解析,也就是字段所属的类或接口的符号引用。如果在解析这个类或接口符号引用的过程中出现了任何异常,都会导致字段符号引用解析的失败。如果解析成功完成,那把这个字段所属的类或接口用C表示,《Java虚拟机规范》要求按照如下步骤对C进行后续字段的搜索:

1)如果C本身就包含了简单名称和字段描述符都与目标相匹配的字段,则返回这个字段的直接引用,查找结束。

2)否则,如果在C中实现了接口,将会按照继承关系从下往上递归搜索各个接口和它的父接口,如果接口中包含了简单名称和字段描述符都与目标相匹配的字段,则返回这个字段的直接引用,查找 结束。

3)否则,如果C不是java.lang.Object的话,将会按照继承关系从下往上递归搜索其父类,如果在父类中包含了简单名称和字段描述符都与目标相匹配的字段,则返回这个字段的直接引用,查找结束。

4)否则,查找失败,抛出java.lang.NoSuchFieldError异常。

如果查找过程成功返回了引用,将会对这个字段进行权限验证,如果发现不具备对字段的访问权限,将抛出java.lang.IllegalAccessError异常。

以上解析规则能够确保Java虚拟机获得字段唯一的解析结果,但在实际情况中,Javac编译器往往会采取比上述规范更加严格一些的约束,譬如有一个同名字段同时出现在某个类的接口和父类当中,或者同时在自己或父类的多个接口中出现,按照解析规则仍是可以确定唯一的访问字段,但Javac编译器就可能直接拒绝其编译为Class文件。在代码清单中演示了这种情况,如果注释了Sub类中 的“public static int A=4;”,接口与父类同时存在字段A,那Oracle公司实现的Javac编译器将提示“The field Sub.A is ambiguous”,并且会拒绝编译这段代码。

public class FieldResolution { 
	interface Interface0 
	{ int A = 0; }
	interface Interface1 extends Interface0 
	{ int A = 1; }
	interface Interface2 
	{ int A = 2; }
	static class Parent implements Interface1 
	{ public static int A = 3; }
	static class Sub extends Parent implements Interface2 
	{ public static int A = 4; }
	public static void main(String[] args) 
	{ 	System.out.println(Sub.A); } 
}
8.2.4.3 方法解析

方法解析的第一个步骤与字段解析一样,也是需要先解析出方法表的class_index项中索引的方法所属的类或接口的符号引用,如果解析成功,那么我们依然用C表示这个类,接下来虚拟机将会按照如下步骤进行后续的方法搜索:

1)由于Class文件格式中类的方法和接口的方法符号引用的常量类型定义是分开的,如果在类的方法表中发现class_index中索引的C是个接口的话,那就直接抛出java.lang.IncompatibleClassChangeError异常。

2)如果通过了第一步,在类C中查找是否有简单名称和描述符都与目标相匹配的方法,如果有则返回这个方法的直接引用,查找结束。

3)否则,在类C的父类中递归查找是否有简单名称和描述符都与目标相匹配的方法,如果有则返回这个方法的直接引用,查找结束

4)否则,在类C实现的接口列表及它们的父接口之中递归查找是否有简单名称和描述符都与目标相匹配的方法,如果存在匹配的方法,说明类C是一个抽象类,这时候查找结束,抛出java.lang.AbstractMethodError异常。

5)否则,宣告方法查找失败,抛出java.lang.NoSuchMethodError。

最后,如果查找过程成功返回了直接引用,将会对这个方法进行权限验证,如果发现不具备对此方法的访问权限,将抛出java.lang.IllegalAccessError异常。

8.2.4.4 接口方法解析

接口方法也是需要先解析出接口方法表的class_index项中索引的方法所属的类或接口的符号引用,如果解析成功,依然用C表示这个接口,接下来虚拟机将会按照如下步骤进行后续的接口方法搜索:

1)与类的方法解析相反,如果在接口方法表中发现class_index中的索引C是个类而不是接口,那么就直接抛出java.lang.IncompatibleClassChangeError异常。

2)否则,在接口C中查找是否有简单名称和描述符都与目标相匹配的方法,如果有则返回这个方法的直接引用,查找结束。

3)否则,在接口C的父接口中递归查找,直到java.lang.Object类(接口方法的查找范围也会包括Object类中的方法)为止,看是否有简单名称和描述符都与目标相匹配的方法,如果有则返回这个方法的直接引用,查找结束。

4)对于规则3,由于Java的接口允许多重继承,如果C的不同父接口中存有多个简单名称和描述符都与目标相匹配的方法,那将会从这多个方法中返回其中一个并结束查找,《Java虚拟机规范》中并没有进一步规则约束应该返回哪一个接口方法。但与之前字段查找类似地,不同发行商实现的Javac编译器有可能会按照更严格的约束拒绝编译这种代码来避免不确定性。

5)否则,宣告方法查找失败,抛出java.lang.NoSuchMethodError异常。

在JDK 9之前,Java接口中的所有方法都默认是public的,也没有模块化的访问约束,所以不存在访问权限的问题,接口方法的符号解析就不可能抛出java.lang.IllegalAccessError异常。但在JDK 9中增加了接口的静态私有方法,也有了模块化的访问约束,所以从JDK 9起,接口方法的访问也完全有可能因访问权限控制而出现java.lang.IllegalAccessError异常。

8.2.5 初始化

类的初始化阶段是类加载过程的最后一个步骤,之前介绍的几个类加载的动作里,除了在加载阶段用户应用程序可以通过自定义类加载器的方式局部参与外,其余动作都完全由Java虚拟机来主导控制。直到初始化阶段,Java虚拟机才真正开始执行类中编写的Java程序代码,将主导权移交给应用程 序。

进行准备阶段时,变量已经赋过一次系统要求的初始零值,而在初始化阶段,则会根据程序员通过程序编码制定的主观计划去初始化类变量和其他资源。我们也可以从另外一种更直接的形式来表 达:初始化阶段就是执行类构造器()方法的过程。()并不是程序员在Java代码中直接编写的方法,它是Javac编译器的自动生成物,但我们非常有必要了解这个方法具体是如何产生的,以及()方法执行过程中各种可能会影响程序运行行为的细节。

()方法是由编译器自动收集类中的所有类变量的赋值动作和静态语句块(static{}块)中的语句合并产生的,编译器收集的顺序是由语句在源文件中出现的顺序决定的,静态语句块中只能访问到定义在静态语句块之前的变量,定义在它之后的变量,在前面的静态语句块可以赋值,但是不能访问

public class Test { 
	static { 
	i = 0; // 给变量复制可以正常编译通过 
	System.out.print(i); // 这句编译器会提示“非法向前引用” 	}
	static int i = 1; 
}

()方法与类的构造函数(即在虚拟机视角中的实例构造器()方法)不同,它不需要显式地调用父类构造器,Java虚拟机会保证在子类的()方法执行前,父类的()方法已经执行完毕。因此在Java虚拟机中第一个被执行的()方法的类型肯定是java.lang.Object

由于父类的()方法先执行,也就意味着父类中定义的静态语句块要优先于子类的变量赋值操作

static class Parent { 
	public static int A = 1; 
	static { A = 2; } 
}
static class Sub extends Parent { 
	public static int B = A; 
}
public static void main(String[] args) { System.out.println(Sub.B); 
}

()方法对于类或接口来说并不是必需的,如果一个类中没有静态语句块,也没有对变量的赋值操作,那么编译器可以不为这个类生成()方法。

接口中不能使用静态语句块,但仍然有变量初始化的赋值操作,因此接口与类一样都会生成()方法。但接口与类不同的是,**执行接口的()方法不需要先执行父接口的()方法, 因为只有当父接口中定义的变量被使用时,父接口才会被初始化。**此外,接口的实现类在初始化时也一样不会执行接口的()方法。

Java虚拟机必须保证一个类的()方法在多线程环境中被正确地加锁同步,如果多个线程同时去初始化一个类,那么只会有其中一个线程去执行这个类的()方法,其他线程都需要阻塞等待,直到活动线程执行完毕()方法。如果在一个类的()方法中有耗时很长的操作,那就可能造成多个进程阻塞(需要注意,其他线程虽然会被阻塞,但如果执行<clinit>()方法的那条线程退出<clinit>()方法后,其他线程唤醒后则不会再次进入<clinit>()方法。同一个类加载器下,一个类型只会被初始化一次。),在实际应用中这种阻塞往往是很隐蔽的。

static class DeadLoopClass { 
	static { 
	// 如果不加上这个if语句,编译器将提示“Initializer does not complete normally” 并拒绝编译 
	if (true) { 		System.out.println(Thread.currentThread() + "init DeadLoopClass"); 
	while (true) { } } } 
	}
	public static void main(String[] args) { 
	Runnable script = new Runnable() { 
		public void run() { 	System.out.println(Thread.currentThread() + "start"); DeadLoopClass dlc = new DeadLoopClass(); System.out.println(Thread.currentThread() + " run over"); } };
		Thread thread1 = new Thread(script); 
		Thread thread2 = new Thread(script); 
		thread1.start(); 
		thread2.start(); }

运行结果如下,一条线程在死循环以模拟长时间操作,另外一条线程在阻塞等待:

Thread[Thread-0,5,main]start 
Thread[Thread-1,5,main]start 
Thread[Thread-0,5,main]init DeadLoopClass

8.3 类加载器

Java虚拟机设计团队有意把类加载阶段中的“通过一个类的全限定名来获取描述该类的二进制字节流”这个动作放到Java虚拟机外部去实现,以便让应用程序自己决定如何去获取所需的类。实现这个动作的代码被称为“类加载器”(Class Loader)。

8.3.1 类与类加载器

类加载器虽然只用于实现类的加载动作,但它在Java程序中起到的作用却远超类加载阶段。对于任意一个类,都必须由加载它的类加载器和这个类本身一起共同确立其在Java虚拟机中的唯一性,每一个类加载器,都拥有一个独立的类名称空间。这句话可以表达得更通俗一些:比较两个类是否“相等”,只有在这两个类是由同一个类加载器加载的前提下才有意义,否则,即使这两个类来源于同一个Class文件,被同一个Java虚拟机加载,只要加载它们的类加载器不同,那这两个类就必定不相等。

这里所指的“相等”,包括代表类的Class对象的equals()方法、isAssignableFrom()方法、isInstance()方法的返回结果,也包括了使用instanceof关键字做对象所属关系判定等各种情况。如果没有注意到类加载器的影响,在某些情况下可能会产生具有迷惑性的结果,代码中演示了不同的类加载器对instanceof关键字运算的结果的影响。

/*** 类加载器与instanceof关键字演示 ** @author zzm */ 
public class ClassLoaderTest { 
	public static void main(String[] args) throws Exception { 
	ClassLoader myLoader = new ClassLoader() { 
	@Override public Class<?> loadClass(String name) throws ClassNotFoundException { 
	try {
	String fileName = name.substring(name.lastIndexOf(".") + 1)+".class"; 		InputStream is = getClass().getResourceAsStream(fileName); 
	if (is == null) { 
	return super.loadClass(name); 
	}
	byte[] b = new byte[is.available()]; 
	is.read(b); 
	return defineClass(name, b, 0, b.length); 
	} catch (IOException e) { 
	throw new ClassNotFoundException(name); } } };
	Object obj = myLoader.loadClass("org.fenixsoft.classloading.ClassLoaderTest").newInstance(); 	System.out.println(obj.getClass()); 	System.out.println(obj instanceof org.fenixsoft.classloading.ClassLoaderTest); } }

运行结果:

class org.fenixsoft.classloading.ClassLoaderTest

false

两行输出结果中,从第一行可以看到这个对象确实是类org.fenixsoft.classloading.ClassLoaderTest实例化出来的,但在第二行的输出中却发现这个对象与org.fenixsoft.classloading.ClassLoaderTest做所属 类型检查的时候返回了false。这是因为Java虚拟机中同时存在了两个ClassLoaderTest类,一个是由虚拟机的应用程序类加载器所加载的,另外一个是由我们自定义的类加载器加载的,虽然它们都来自同一 个Class文件,但在Java虚拟机中仍然是两个互相独立的类,做对象所属类型检查时的结果自然为false。

8.3.2 双亲委派模型

站在Java虚拟机的角度来看,只存在两种不同的类加载器:一种是启动类加载器(Bootstrap ClassLoader),这个类加载器使用C++语言实现,是虚拟机自身的一部分;另外一种就是其他所有的类加载器,这些类加载器都由Java语言实现,独立存在于虚拟机外部,并且全都继承自抽象类java.lang.ClassLoader。

自JDK 1.2以来,Java一直保持着三层类加载器、双亲委派的类加载架构

  • 启动类加载器(Bootstrap Class Loader):前面已经介绍过,这个类加载器负责加载存放在<JAVA_HOME>\lib目录,或者被-Xbootclasspath参数所指定的路径中存放的,而且是Java虚拟机能够识别的(按照文件名识别,如rt.jar、tools.jar,名字不符合的类库即使放在lib目录中也不会被加载)类库加载到虚拟机的内存中。启动类加载器无法被Java程序直接引用,用户在编写自定义类加载器时,如果需要把加载请求委派给引导类加载器去处理,那直接使用null代替即可

    如下代码展示的就是 java.lang.ClassLoader.getClassLoader()方法的代码片段,其中的注释和代码实现都明确地说明了以null值来代表引导类加载器的约定规则。

/** Returns the class loader for the class. Some implementations may use null to represent the bootstrap class loader. This method will return null in such implementations if this class was loaded by the bootstrap class loader. */
public ClassLoader getClassLoader() 
{ 
	ClassLoader cl = getClassLoader0(); 
	if (cl == null) return null; 
	SecurityManager sm = System.getSecurityManager(); 
	if (sm != null) { 
ClassLoader ccl = ClassLoader.getCallerClassLoader(); 
if (ccl != null && ccl != cl && !cl.isAncestor(ccl)) 
{ sm.checkPermission(SecurityConstants.GET_CLASSLOADER_PERMISSION); } }
return cl; }
  • 扩展类加载器(Extension Class Loader):这个类加载器是在类sun.misc.Launcher$ExtClassLoader中以Java代码的形式实现的。它负责加载<JAVA_HOME>\lib\ext目录中,或者被java.ext.dirs系统变量所指定的路径中所有的类库。根据“扩展类加载器”这个名称,就可以推断出这是一种Java系统类库的扩展机制,JDK的开发团队允许用户将具有通用性的类库放置在ext目录里以扩展Java SE的功能,在JDK9之后,这种扩展机制被模块化带来的天然的扩展能力所取代。由于扩展类加载器是由Java代码实现的,开发者可以直接在程序中使用扩展类加载器来加载Class文件。

  • 应用程序类加载器(Application Class Loader):这个类加载器由 sun.misc.Launcher$AppClassLoader来实现。由于应用程序类加载器是ClassLoader类中的getSystemClassLoader()方法的返回值,所以有些场合中也称它为“系统类加载器”。它负责加载用户类路径 (ClassPath)上所有的类库,开发者同样可以直接在代码中使用这个类加载器。如果应用程序中没有自定义过自己的类加载器,一般情况下这个就是程序中默认的类加载器。

类加载器双亲委派模型:

image-20210824131418164

JDK 9之前的Java应用都是由这三种类加载器互相配合来完成加载的,如果用户认为有必要,还可以加入自定义的类加载器来进行拓展,典型的如增加除了磁盘位置之外的Class文件来源,或者通过类 加载器实现类的隔离、重载等功能。

双亲委派模型要求除了顶层的启动类加载器外,其余的类加载器都应有自己的父类加载器。不过这里类加载器之间的父子关系一般不是以继承(Inheritance)的关系来实现的,而是通常使用组合(Composition)关系来复用父加载器的代码。

双亲委派模型的工作过程是:如果一个类加载器收到了类加载的请求,它首先不会自己去尝试加载这个类,而是把这个请求委派给父类加载器去完成,每一个层次的类加载器都是如此因此所有的加载请求最终都应该传送到最顶层的启动类加载器中,只有当父加载器反馈自己无法完成这个加载请求(它的搜索范围中没有找到所需的类)时,子加载器才会尝试自己去完成加载。

使用双亲委派模型来组织类加载器之间的关系,一个显而易见的好处就是Java中的类随着它的类加载器一起具备了一种带有优先级的层次关系。例如类java.lang.Object,它存放在rt.jar之中,无论哪一个类加载器要加载这个类,最终都是委派给处于模型最顶端的启动类加载器进行加载,因此Object类在程序的各种类加载器环境中都能够保证是同一个类。反之,如果没有使用双亲委派模型,都由各个 类加载器自行去加载的话,如果用户自己也编写了一个名为java.lang.Object的类,并放在程序的 ClassPath中,那系统中就会出现多个不同的Object类,Java类型体系中最基础的行为也就无从保证,应用程序将会变得一片混乱。如果读者有兴趣的话,可以尝试去写一个与rt.jar类库中已有类重名的Java类,将会发现它可以正常编译,但永远无法被加载运行。

双亲委派模型对于保证Java程序的稳定运作极为重要,但它的实现却异常简单,用以实现双亲委派的代码只有短短十余行,全部集中在java.lang.ClassLoader的loadClass()方法之中

protected synchronized Class<?> loadClass(String name, boolean resolve) throws ClassNotFoundException { 
// 首先,检查请求的类是否已经被加载过了 
Class c = findLoadedClass(name); 
if (c == null) { 
	try { 
	if (parent != null) { 
		c = parent.loadClass(name, false); 
	} else { 
		c = findBootstrapClassOrNull(name); 
		}
	} catch (ClassNotFoundException e) { 
	// 如果父类加载器抛出ClassNotFoundException 
	// 说明父类加载器无法完成加载请求 }
	if (c == null) { 
	// 在父类加载器无法加载时 
	// 再调用本身的findClass方法来进行类加载 
	c = findClass(name); } }
	if (resolve) { resolveClass(c); }
	return c; 
}

这段代码的逻辑清晰易懂:先检查请求加载的类型是否已经被加载过,若没有则调用父加载器的loadClass()方法,若父加载器为空则默认使用启动类加载器作为父加载器。假如父类加载器加载失败,抛出ClassNotFoundException异常的话,才调用自己的findClass()方法尝试进行加载。

8.3.3 破坏双亲委派模型

上文提到过双亲委派模型并不是一个具有强制性约束的模型,而是Java设计者推荐给开发者们的类加载器实现方式。在Java的世界中大部分的类加载器都遵循这个模型,但也有例外的情况,直到Java模块化出现为止,双亲委派模型主要出现过3次较大规模“被破坏”的情况。

8.4 Java模块化系统

在JDK 9中引入的Java模块化系统(Java Platform Module System,JPMS)是对Java技术的一次重要升级,为了能够实现模块化的关键目标——可配置的封装隔离机制,Java虚拟机对类加载架构也做出了相应的变动调整,才使模块化系统得以顺利地运作。JDK 9的模块不仅仅像之前的JAR包那样只是简单地充当代码的容器,除了代码外,Java的模块定义还包含以下内容:

  • 依赖其他模块的列表。
  • 导出的包列表,即其他模块可以使用的列表。
  • 开放的包列表,即其他模块可反射访问模块的列表。
  • 使用的服务列表。
  • 提供服务的实现列表。

可配置的封装隔离机制首先要解决JDK 9之前基于类路径(ClassPath)来查找依赖的可靠性问题。此前,如果类路径中缺失了运行时依赖的类型,那就只能等程序运行到发生该类型的加载、链接时才会报出运行的异常。而在JDK 9以后,如果启用了模块化进行封装,模块就可以声明对其他模块的显式依赖,这样Java虚拟机就能够在启动时验证应用程序开发阶段设定好的依赖关系在运行期是否完备,如有缺失那就直接启动失败,从而避免了很大一部分由于类型依赖而引发的运行时异常。可配置的封装隔离机制还解决了原来类路径上跨JAR文件的public类型的可访问性问题。JDK 9中的public类型不再意味着程序的所有地方的代码都可以随意访问到它们,模块提供了更精细的可访问性控制,必须明确声明其中哪一些public的类型可以被其他哪一些模块访问,这种访问控制也主要是在类加载过程中完成的。

8.4.1 模块的兼容性

为了使可配置的封装隔离机制能够兼容传统的类路径查找机制,JDK 9提出了与“类路径”(ClassPath)相对应的“模块路径”(ModulePath)的概念。简单来说,就是某个类库到底是模块还是传统的JAR包,只取决于它存放在哪种路径上。只要是放在类路径上的JAR文件,无论其中是否包含模块化信息(是否包含了module-info.class文件),它都会被当作传统的JAR包来对待;相应地,只要放在模块路径上的JAR文件,即使没有使用JMOD后缀,甚至说其中并不包含module-info.class文 件,它也仍然会被当作一个模块来对待。

模块化系统将按照以下规则来保证使用传统类路径依赖的Java程序可以不经修改地直接运行在JDK 9及以后的Java版本上,即使这些版本的JDK已经使用模块来封装了Java SE的标准类库,模块化系统的这套规则也仍然保证了传统程序可以访问到所有标准类库模块中导出的包。

  • JAR文件在类路径的访问规则:所有类路径下的JAR文件及其他资源文件,都被视为自动打包在一个匿名模块(Unnamed Module)里,这个匿名模块几乎是没有任何隔离的,它可以看到和使用类路径上所有的包、JDK系统模块中所有的导出包,以及模块路径上所有模块中导出的包。
  • 模块在模块路径的访问规则:模块路径下的具名模块(Named Module)只能访问到它依赖定义中列明依赖的模块和包,匿名模块里所有的内容对具名模块来说都是不可见的,即具名模块看不见传统JAR包的内容。
  • JAR文件在模块路径的访问规则:如果把一个传统的、不包含模块定义的JAR文件放置到模块路径中,它就会变成一个自动模块(Automatic Module)。尽管不包含module-info.class,但自动模块将默认依赖于整个模块路径中的所有模块,因此可以访问到所有模块导出的包,自动模块也默认导出自己所有的包

以上3条规则保证了即使Java应用依然使用传统的类路径,升级到JDK 9对应用来说几乎(类加载器上的变动还是可能会导致少许可见的影响,将在下节介绍)不会有任何感觉,项目也不需要专门为了升级JDK版本而去把传统JAR包升级成模块。

除了向后兼容性外,随着JDK 9模块化系统的引入,更值得关注的是它本身面临的模块间的管理和兼容性问题:如果同一个模块发行了多个不同的版本,那只能由开发者在编译打包时人工选择好正 确版本的模块来保证依赖的正确性。Java模块化系统目前不支持在模块定义中加入版本号来管理和约束依赖,本身也不支持多版本号的概念和版本选择功能。

8.4.2 模块化下的类加载器

为了保证兼容性,JDK 9并没有从根本上动摇从JDK 1.2以来运行了二十年之久的三层类加载器架构以及双亲委派模型。但是为了模块化系统的顺利施行,模块化下的类加载器仍然发生了一些应该被注意到变动,主要包括以下几个方面。

首先,是扩展类加载器(Extension Class Loader)被平台类加载器(Platform Class Loader)取代。这其实是一个很顺理成章的变动,既然整个JDK都基于模块化进行构建(原来的rt.jar和tools.jar被拆分成数十个JMOD文件),其中的Java类库就已天然地满足了可扩展的需求,那自然无须再保留<JAVA_HOME>\lib\ext目录,此前使用这个目录或者java.ext.dirs系统变量来扩展JDK功能的机制已经没有继续存在的价值了,用来加载这部分类库的扩展类加载器也完成了它的历史使命。类似地,在新版的JDK中也取消了<JAVA_HOME>\jre目录,因为随时可以组合构建出程序运行所需的JRE来,譬如假设我们只使用java.base模块中的类型,那么随时可以通过以下命令打包出一个“JRE”:

jlink -p $JAVA_HOME/jmods --add-modules java.base --output jre

其次,平台类加载器和应用程序类加载器都不再派生自java.net.URLClassLoader,如果有程序直接依赖了这种继承关系,或者依赖了URLClassLoader类的特定方法,那代码很可能会在JDK 9及更高版 本的JDK中崩溃。现在启动类加载器、平台类加载器、应用程序类加载器全都继承于jdk.internal.loader.BuiltinClassLoader,BuiltinClassLoader中实现了新的模块化架构下类如何从模块中加载的逻辑,以及模块中资源可访问性的处理。两者的前后变化如图

JDK 9之前的类加载器继承架构

image-20210824143327515

JDK 9之后:

image-20210824143347690

上图中有“BootClassLoader”存在,启动类加载器现在是在Java虚拟机内部和Java类库共同协作实现的类加载器,尽管有了BootClassLoader这样的Java类,但为了与之前的代码保持兼容,所有在获取启动类加载器的场景(譬如Object.class.getClassLoader())中仍然会返回null来代替,而不会得到BootClassLoader的实例。

JDK9之后类加载器委派关系:

image-20210824143503287

最后,JDK 9中虽然仍然维持着三层类加载器和双亲委派的架构,但类加载的委派关系也发生了变动。当平台及应用程序类加载器收到类加载请求,在委派给父加载器加载前,要先判断该类是否能够归属到某一个系统模块中,如果可以找到这样的归属关系,就要优先委派给负责那个模块的加载器完成加载,也许这可以算是对双亲委派的第四次破坏。

在Java模块化系统明确规定了三个类加载器负责各自加载的模块,即前面所说的归属关系,如下所示。

  • 启动类加载器负责加载的模块:

image-20210824143717566

  • 平台类加载器负责加载的模块:

image-20210824143741827

  • 应用程序类加载器负责加载的模块:

image-20210824143801937

9 虚拟机字节码执行引擎

执行引擎是Java虚拟机核心的组成部分之一。“虚拟机”是一个相对于“物理机”的概念,这两种机器都有代码执行能力,其区别是物理机的执行引擎是直接建立在处理器、缓存、指令集和操作系统层面上的,而虚拟机的执行引擎则是由软件自行实现的,因此可以不受物理条件制约地定制指令集与执行引擎的结构体系,能够执行那些不被硬件直接支持的指令集格式。

在不同的虚拟机实现中,执行引擎在执行字节码的时候,通常会有解释执行(通过解释器执行)和编译执行(通过即时编译器产生本地代码执行)两种选择(有一些虚拟机(如Sun Classic VM)的内部只存在解释器,只能解释执行,另外一些虚拟机(如BEA JRockit)的内部只存在即时编译器,只能编译执行。),也可能两者兼备,还可能会有同时包含几个不同级别的即时编译器一起工作的执行引擎。但 从外观上来看,所有的Java虚拟机的执行引擎输入、输出都是一致的:输入的是字节码二进制流,处理过程是字节码解析执行的等效过程,输出的是执行结果

9.1 运行时栈帧结构

Java虚拟机以方法作为最基本的执行单元,“栈帧”(Stack Frame)则是用于支持虚拟机进行方法调用和方法执行背后的数据结构,它也是虚拟机运行时数据区中的虚拟机栈(Virtual Machine Stack)]的栈元素。栈帧存储了方法的局部变量表、操作数栈、动态连接和方法返回地址等信息。每一个方法从调用开始至执行结束的过程,都对应着一个栈帧在虚拟机栈里面从入栈到出栈的过程。

每一个栈帧都包括了局部变量表、操作数栈、动态连接、方法返回地址和一些额外的附加信息。在编译Java程序源码的时候,栈帧中需要多大的局部变量表,需要多深的操作数栈就已经被分析计算出来,并且写入到方法表的Code属性之中。换言之,一个栈帧需要分配多少内存,并不会受到程序运行期变量数据的影响,而仅仅取决于程序源码和具体的虚拟机实现的栈内存布局形式。

一个线程中的方法调用链可能会很长,以Java程序的角度来看,同一时刻、同一条线程里面,在调用堆栈的所有方法都同时处于执行状态。而对于执行引擎来讲,在活动线程中,只有位于栈顶的方法才是在运行的,只有位于栈顶的栈帧才是生效的,其被称为“当前栈帧”(Current Stack Frame),与这个栈帧所关联的方法被称为“当前方法”(Current Method)。执行引擎所运行的所有字节码指令都只针对当前栈帧进行操作

栈帧概念结构如下:

image-20210824163939196

9.1.1 局部变量表

局部变量表(Local Variables Table)是一组变量值的存储空间,用于存放方法参数和方法内部定义的局部变量。在Java程序被编译为Class文件时,就在方法的Code属性的max_locals数据项中确定了该方法所需分配的局部变量表的最大容量

局部变量表的容量以变量槽(Variable Slot)为最小单位。

一个变量槽可以存放一个32位以内的数据类型,Java中占用不超过32位存储空间的数据类型有boolean、byte、char、short、int、float、reference(Java虚拟机规范中没有明确规定reference类型的长度,它的长度与实际使用32位还是64位虚拟机有关,如果是64位虚拟机,还与是否开启某些对象指针压缩的优化有关,这里我们暂且只取32位虚拟机的reference长度。 )和returnAddress这8种类型。

(reference类型表示对一个对象实例的引用,《Java虚拟机规范》既没有说明它的长度,也没有明确指出这种引用应有怎样的结构。但是一般来说,虚拟机实现至少都应当能通过这个引 用做到两件事情,一是从根据引用直接或间接地查找到对象在Java堆中的数据存放的起始地址或索引,二是根据引用直接或间接地查找到对象所属数据类型方法区中的存储的类型信息。C++语言,默认情况下[不开启RTTI支持的情况],就只能满足第一点,而不满足第二点。这也是为何C++中无法提供Java语言里很常见的反射的根本原因。 )

对于64位的数据类型,Java虚拟机会以高位对齐的方式为其分配两个连续的变量槽空间。Java语言中明确的64位的数据类型只有long和double两种。这里把long和double数据类型分割存储的做法与“long和double的非原子性协定”中允许把一次long和double数据类型读写分割为两次32位读写的做法有些类似。不过,由于局部变量表是建立在线程堆栈中的,属于线程私有的数据,无论读写两个连续的变量槽是否为原子操作,都不会引起数据竞争和线程安全问题。

Java虚拟机通过索引定位的方式使用局部变量表,索引值的范围是从0开始至局部变量表最大的变量槽数量。如果访问的是32位数据类型的变量,索引N就代表了使用第N个变量槽,如果访问的是64位数据类型的变量,则说明会同时使用第N和N+1两个变量槽。对于两个相邻的共同存放一个64位数据的两个变量槽,虚拟机不允许采用任何方式单独访问其中的某一个,《Java虚拟机规范》中明确要求了如果遇到进行这种操作的字节码序列,虚拟机就应该在类加载的校验阶段中抛出异常。

当一个方法被调用时,Java虚拟机会使用局部变量表来完成参数值到参数变量列表的传递过程,即实参到形参的传递。如果执行的是实例方法(没有被static修饰的方法),那局部变量表中第0位索引的变量槽默认是用于传递方法所属对象实例的引用,在方法中可以通过关键字“this”来访问到这个隐含的参数。其余参数则按照参数表顺序排列,占用从1开始的局部变量槽,参数表分配完毕后,再根据方法体内部定义的变量顺序和作用域分配其余的变量槽。

为了尽可能节省栈帧耗用的内存空间,局部变量表中的变量槽是可以重用的,方法体中定义的变量,其作用域并不一定会覆盖整个方法体,如果当前字节码PC计数器的值已经超出了某个变量的作用域,那这个变量对应的变量槽就可以交给其他变量来重用。不过,这样的设计除了节省栈帧空间以外,还会伴随有少量额外的副作用,例如在某些情况下变量槽的复用会直接影响到系统的垃圾收集行为.

public static void main(String[] args)() { 
	byte[] placeholder = new byte[64 * 1024 * 1024]; 		System.gc(); 
}

向内存填充了64MB的数据,然后通知虚拟机进行垃圾收集。我们在虚拟机运行参数中加上“-verbose:gc”来看看垃圾收集的过程,发现在System.gc()运行后并没有回收掉这64MB的内存,下面是运行的结果:

[GC 66846K->65824K(125632K), 0.0032678 secs] 
[Full GC 65824K->65746K(125632K), 0.0064131 secs]

代码没有回收掉placeholder所占的内存是能说得过去,因为在执行System.gc()时,变量placeholder还处于作用域之内,虚拟机自然不敢回收掉placeholder的内存。那我们把代码修改一下:

public static void main(String[] args)() {
	{ 
		byte[] placeholder = new byte[64 * 1024 * 1024];
	}
	System.gc(); 
}

加入了花括号之后,placeholder的作用域被限制在花括号以内,从代码逻辑上讲,在执行System.gc()的时候,placeholder已经不可能再被访问了,但执行这段程序,会发现运行结果如下,还是有64MB的内存没有被回收掉。

[GC 66846K->65888K(125632K), 0.0009397 secs] 
[Full GC 65888K->65746K(125632K), 0.0051574 secs]

在解释为什么之前,我们先对这段代码进行第二次修改,在调用System.gc()之前加入一行“int a=0;”

public static void main(String[] args)() {
	{ 
		byte[] placeholder = new byte[64 * 1024 * 1024]; 	 }
	int a = 0; 
	System.gc(); 
}

这个修改看起来很莫名其妙,但运行一下程序,却发现这次内存真的被正确回收了:

[GC 66401K->65778K(125632K), 0.0035471 secs] 
[Full GC 65778K->218K(125632K), 0.0140596 secs]

placeholder能否被回收的根本原因就是:局部变量表中的变量槽是否还存有关于placeholder数组对象的引用。第一次修改中,代码虽然已经离开了placeholder的作用域,但在此之后,再没有发生过任何对局部变量表的读写操作,placeholder原本所占用的变量槽还没有被其他变量所复用,所以作为GC Roots一部分的局部变量表仍然保持着对它的关联。这种关联没有被及时打断, 绝大部分情况下影响都很轻微。但如果遇到一个方法,其后面的代码有一些耗时很长的操作,而前面又定义了占用了大量内存但实际上已经不会再使用的变量,手动将其设置为null值(用来代替那句int a=0,把变量对应的局部变量槽清空)便不见得是一个绝对无意义的操作,这种操作可以作为一种在极特殊情形(对象占用内存大、此方法的栈帧长时间不能被回收、方法调用次数达不到即时编译器的编译条件)下的“奇技”来使用。

示例说明了赋null操作在某些极端情况下确实是有用的,但是不应当对赋null值操作有什么特别的依赖,更没有必要把它当作一个普遍的编码规则来推广。原因有两点,从编码角度讲,以恰当的变量作用域来控制变量回收时间才是最优雅的解决方法,如最后那段代码那样的场景除了做实验外几乎毫无用处。更关键的是,从执行角度来讲,使用赋null操作来优化内存回收是建立在对字节码执行引擎概念模型的理解之上的

当虚拟机使用解释器执行时,通常与概念模型还会比较接近,但经过即时编译器施加了各种编译优化措施以后,两者的差异就会非常大,只保证程序执行的结果与概念一致。在 实际情况中,即时编译才是虚拟机执行代码的主要方式,赋null值的操作在经过即时编译优化后几乎是一定会被当作无效操作消除掉的,这时候将变量设置为null就是毫无意义的行为。字节码被即时编译为本地代码后,对GC Roots的枚举也与解释执行时期有显著差别,以前面的例子来看,经过第一次修改的代码(加局部作用域)在经过即时编译后,System.gc()执行时就可以正确地回收内存,根本无须写成最后一段代码的样子。

关于局部变量表,还有一点可能会对实际开发产生影响,就是局部变量不像前面介绍的类变量那样存在“准备阶段”。之前我们已经知道类的字段变量有两次赋初始值的过程,一次在准备阶段赋予系统初始值;另外一次在初始化阶段赋予程序员定义的初始值。因此即使在初始化阶段程序员没有为类变量赋值也没有关系,类变量仍然具有一个确定的初始值(准备阶段赋予的),不会产生歧义。但局部变量就不一样了,如果一个局部变量定义了但没有赋初始值,那它是完全不能使用的。所以不要认为 Java中任何情况下都存在诸如整型变量默认为0、布尔型变量默认为false等这样的默认值规则。如代码所示,这段代码在Java中其实并不能运行(但是在其他语言,譬如C和C++中类似的代码是可以运行的),所幸编译器能在编译期间就检查到并提示出这一点,即便编译能通过或者手动生成字节码的方式制造出下面代码的效果,字节码校验的时候也会被虚拟机发现而导致类加载失败。

public static void main(String[] args) { 
	int a; 
	System.out.println(a); 
}
9.1.2 操作数栈

操作数栈(Operand Stack)也常被称为操作栈,它是一个后入先出(Last In First Out,LIFO)栈。同局部变量表一样,操作数栈的最大深度也在编译的时候被写入到Code属性的max_stacks数据项之中。操作数栈的每一个元素都可以是包括long和double在内的任意Java数据类型。32位数据类型所占的栈容量为1,64位数据类型所占的栈容量为2。Javac编译器的数据流分析工作保证了在方法执行的任何时候,操作数栈的深度都不会超过在max_stacks数据项中设定的最大值。

当一个方法刚刚开始执行的时候,这个方法的操作数栈是空的,在方法的执行过程中,会有各种字节码指令往操作数栈中写入和提取内容,也就是出栈和入栈操作。

操作数栈中元素的数据类型必须与字节码指令的序列严格匹配,在编译程序代码的时候,编译器必须要严格保证这一点,在类校验阶段的数据流分析中还要再次验证这一点。

另外在概念模型中,两个不同栈帧作为不同方法的虚拟机栈的元素,是完全相互独立的。但是在大多虚拟机的实现里都会进行一些优化处理,令两个栈帧出现一部分重叠。让下面栈帧的部分操作数栈与上面栈帧的部分局部变量表重叠在一起,这样做不仅节约了一些空间,更重要的是在进行方法调用时就可以直接共用一部分数据,无须进行额外的参数复制传递了,重叠的过程如图:

两个栈帧之间的数据共享:

image-20210824190556285

Java虚拟机的解释执行引擎被称为“基于栈的执行引擎”,里面的“栈”就是操作数栈。

9.1.3 动态连接

每个栈帧都包含一个指向运行时常量池中该栈帧所属方法的引用,持有这个引用是为了支持方法调用过程中的动态连接(Dynamic Linking)。

Class文件的常量池中存有大量的符号引用,字节码中的方法调用指令就以常量池里指向方法的符号引用作为参数。这些符号引用一部分会在类加载阶段或者第一次使用的时候就被转化为直接引用,这种转化被称为静态解析。另外一部分将在每一次运行期间都转化为直接引用,这部分就称为动态连接。

9.1.4 方法返回地址

当一个方法开始执行后,只有两种方式退出这个方法。第一种方式是执行引擎遇到任意一个方法返回的字节码指令,这时候可能会有返回值传递给上层的方法调用者(调用当前方法的方法称为调用 者或者主调方法),方法是否有返回值以及返回值的类型将根据遇到何种方法返回指令来决定,这种 退出方法的方式称为“正常调用完成”(Normal Method Invocation Completion)。

另外一种退出方式是在方法执行的过程中遇到了异常,并且这个异常没有在方法体内得到妥善处理。无论是Java虚拟机内部产生的异常,还是代码中使用athrow字节码指令产生的异常,只要在本方法的异常表中没有搜索到匹配的异常处理器,就会导致方法退出,这种退出方法的方式称为“异常调用完成(Abrupt Method Invocation Completion)”。一个方法使用异常完成出口的方式退出,是不会给它的上层调用者提供任何返回值的。

无论采用何种退出方式,在方法退出之后,都必须返回到最初方法被调用时的位置,程序才能继续执行,方法返回时可能需要在栈帧中保存一些信息,用来帮助恢复它的上层主调方法的执行状态。一般来说,方法正常退出时,主调方法的PC计数器的值就可以作为返回地址,栈帧中很可能会保存这个计数器值。而方法异常退出时,返回地址是要通过异常处理器表来确定的,栈帧中就一般不会保存 这部分信息。

方法退出的过程实际上等同于把当前栈帧出栈,因此退出时可能执行的操作有:恢复上层方法的局部变量表和操作数栈,把返回值(如果有的话)压入调用者栈帧的操作数栈中,调整PC计数器的值以指向方法调用指令后面的一条指令等。笔者这里写的“可能”是由于这是基于概念模型的讨论,只有具体到某一款Java虚拟机实现,会执行哪些操作才能确定下来

9.2 方法调用

方法调用并不等同于方法中的代码被执行,方法调用阶段唯一的任务就是确定被调用方法的版本(即调用哪一个方法),暂时还未涉及方法内部的具体运行过程。

Class文件的编译过程中不包含传统程序语言编译的连接步骤一切方法调用在Class文件里面存储的都只是符号引用,而不是方法在实际运行时内存布局中的入口地址(也就是之前说的直接引用)。这个特性给Java带来了更强大的动态扩展能力,但也使得Java方法调用过程变得相对复杂,某些调用需要在类加载期间,甚至到运行期间才能确定目标方法的直接引用。

9.2.1 解析

所有方法调用的目标方法在Class文件里面都是一个常量池中的符号引用,在类加载的解析阶段,会将其中的一部分符号引用转化为直接引用,这种解析能够成立的前提是:方法在程序真正运行之前就有一个可确定的调用版本,并且这个方法的调用版本在运行期是不可改变的。换句话说,调用目标在程序代码写好、编译器进行编译那一刻就已经确定下来。这类方法的调用被称为解析(Resolution)。

在Java语言中符合“编译期可知,运行期不可变”这个要求的方法,主要有静态方法私有方法两大类,前者与类型直接关联,后者在外部不可被访问,这两种方法各自的特点决定了它们都不可能通过继承或别的方式重写出其他版本,因此它们都适合在类加载阶段进行解析。

调用不同类型的方法,字节码指令集里设计了不同的指令。在Java虚拟机支持以下5条方法调用字节码指令,分别是:

  • invokestatic。用于调用静态方法。
  • invokespecial。用于调用实例构造器()方法、私有方法父类中的方法
  • invokevirtual。用于调用所有的虚方法
  • invokeinterface。用于调用接口方法,会在运行时再确定一个实现该接口的对象
  • invokedynamic。先在运行时动态解析出调用点限定符所引用的方法,然后再执行该方法。前面4条调用指令,分派逻辑都固化在Java虚拟机内部,而invokedynamic指令的分派逻辑是由用户设定的引导方法来决定的。

只要能被invokestatic和invokespecial指令调用的方法,都可以在解析阶段中确定唯一的调用版本,Java语言里符合这个条件的方法共有静态方法、私有方法、实例构造器、父类方法4种,再加上被final修饰的方法(尽管它使用invokevirtual指令调用),这5种方法调用会在类加载的时候就可以把符号引用解析为该方法的直接引用。这些方法统称为“非虚方法”(Non-Virtual Method),与之相反,其他方法就被称为“虚方法”(Virtual Method)。

该样例中,静态方法sayHello()只可能属于类型StaticResolution,没有任何途径可以覆盖或隐藏这个方法。

public class StaticResolution {
	public static void sayHello() { 							System.out.println("hello world");
}
public static void main(String[] args) { 						StaticResolution.sayHello(); 
} }

使用javap命令查看这段程序对应的字节码,会发现的确是通过invokestatic命令来调用sayHello()方法,而且其调用的方法版本已经在编译时就明确以常量池项的形式固化在字节码指令的参数之中(代码里的31号常量池项):

image-20210824194040826

Java中的非虚方法除了使用invokestatic、invokespecial调用的方法之外还有一种,就是被final修饰的实例方法。虽然由于历史设计的原因,final方法是使用invokevirtual指令来调用的,但是因为它也无法被覆盖,没有其他版本的可能,所以也无须对方法接收者进行多态选择,又或者说多态选择的结果肯定是唯一的。在《Java语言规范》中明确定义了被final修饰的方法是一种非虚方法。 解析调用一定是个静态的过程,在编译期间就完全确定,在类加载的解析阶段就会把涉及的符号引用全部转变为明确的直接引用,不必延迟到运行期再去完成。而另一种主要的方法调用形式:分派(Dispatch)调用则要复杂许多,它可能是静态的也可能是动态的,按照分派依据的宗量数可分为单分派和多分派。这两类分派方式两两组合就构成了静态单分派、静态多分派、动态单分派、动态多分派4种分派组合情况

9.2.2 分派
9.2.2.1 静态分配

为了解释静态分派和重载(Overload)下面是一段经常出现在面试题中的程序代码,想一下程序的输出结果是什么。后面的话题将围绕这个类的方法来编写重载代码,以分析虚拟机和编译器确定方法版本的过程。

方法静态分配演示:

/*** 方法静态分派演示 * @author zzm */ 
public class StaticDispatch { 
	static abstract class Human { }
	static class Man extends Human { }
	static class Woman extends Human { }
	public void sayHello(Human guy) { 							System.out.println("hello,guy!"); 
	}
	public void sayHello(Man guy) { 							System.out.println("hello,gentleman!"); 
	}
	public void sayHello(Woman guy) { 							System.out.println("hello,lady!"); 
	}
	public static void main(String[] args) {
    Human man = new Man(); 
    Human woman = new Woman(); 
    StaticDispatch sr = new StaticDispatch(); 				sr.sayHello(man); 
    sr.sayHello(woman); 
    }
}

运行结果:

hello,guy!
hello,guy!

我们把上面代码中的“Human”称为变量的“静态类型”(Static Type),或者叫“外观类型”(Apparent Type),后面的“Man”则被称为变量的“实际类型”(Actual Type)或者叫“运行时类型”(Runtime Type)。静态类型和实际类型在程序中都可能会发生变化,区别是静态类型的变化仅仅在使用时发生,变量本身的静态类型不会被改变,并且最终的静态类型是在编译期可知的而实际类型变化的结果在运行期才可确定,编译器在编译程序的时候并不知道一个对象的实际类型是什么。

譬如有下面的代码:

// 实际类型变化 
Human human = (new Random()).nextBoolean() ? new Man() : new Woman(); 
// 静态类型变化 
sr.sayHello((Man) human) 
sr.sayHello((Woman) human)

对象human的实际类型是可变的,编译期间它完全是个“薛定谔的人”,到底是Man还是Woman,必须等到程序运行到这行的时候才能确定。而human的静态类型是Human,也可以在使用时(如sayHello()方法中的强制转型)临时改变这个类型,但这个改变仍是在编译期是可知的,两次sayHello()方法的调用,在编译期完全可以明确转型的是Man还是Woman。

解释清楚了静态类型与实际类型的概念,我们就把话题再转回到之前那段代码中。main()里面的两次sayHello()方法调用,在方法接收者已经确定是对象“sr”的前提下,使用哪个重载版本,就完全取决于传入参数的数量和数据类型。代码中故意定义了两个静态类型相同,而实际类型不同的变量,但虚拟机(或者准确地说是编译器)在重载时是通过参数的静态类型而不是实际类型作为判定依据的。由于静态类型在编译期可知,所以在编译阶段,Javac编译器就根据参数的静态类型决定了会使用哪个重载版本,因此选择了sayHello(Human)作为调用目标,并把这个方法的符号引用写到main()方法里的两条invokevirtual指令的参数中。

所有依赖静态类型来决定方法执行版本的分派动作,都称为静态分派。静态分派的最典型应用表现就是方法重载。静态分派发生在编译阶段,因此确定静态分派的动作实际上不是由虚拟机来执行的。

需要注意Javac编译器虽然能确定出方法的重载版本,但在很多情况下这个重载版本并不是“唯一”的,往往只能确定一个“相对更合适的”版本。这种模糊的结论在由0和1构成的计算机世界中算是个比较稀罕的事件,产生这种模糊结论的主要原因是字面量天生的模糊性,它不需要定义,所以字面量就没有显式的静态类型,它的静态类型只能通过语言、语法的规则去理解和推断。

public class Overload { 
public static void sayHello(Object arg) { System.out.println("hello Object"); }

public static void sayHello(int arg) { System.out.println("hello int"); }

public static void sayHello(long arg) { System.out.println("hello long"); }

public static void sayHello(Character arg) { System.out.println("hello Character"); }

public static void sayHello(char arg) { System.out.println("hello char"); }

public static void sayHello(char... arg) { System.out.println("hello char ..."); }

public static void sayHello(Serializable arg) { System.out.println("hello Serializable"); }

public static void main(String[] args) { 
	sayHello('a'); 
	} 
}

上面的代码运行后会输出:

hello char

这很好理解,'a’是一个char类型的数据,自然会寻找参数类型为char的重载方法,如果注释掉 sayHello(char arg)方法,那输出会变为:

hello int

这时发生了一次自动类型转换,'a’除了可以代表一个字符串,还可以代表数字97(字符’a’的Unicode数值为十进制数字97),因此参数类型为int的重载也是合适的。我们继续注释掉sayHello(intarg)方法,那输出会变为

hello long

这时发生了两次自动类型转换,'a’转型为整数97之后,进一步转型为长整数97L,匹配了参数类型为long的重载。笔者在代码中没有写其他的类型如float、double等的重载,不过实际上自动转型还能继续发生多次,按照char>int>long>float>double的顺序转型进行匹配,但不会匹配到byte和short类型的重 载,因为char到byte或short的转型是不安全的。我们继续注释掉sayHello(long arg)方法,那输出会变为:

hello Character

这时发生了一次自动装箱,'a’被包装为它的封装类java.lang.Character,所以匹配到了参数类型为Character的重载,继续注释掉sayHello(Character arg)方法,那输出会变为:

hello Serializable

这个输出可能会让人摸不着头脑,一个字符或数字与序列化有什么关系?出现hello Serializable是因为java.lang.Serializable是java.lang.Character类实现的一个接口,当自动装箱之后发现还是找不到装箱类,但是找到了装箱类所实现的接口类型,所以紧接着又发生一次自动转型。char可以转型成int, 但是Character是绝对不会转型为Integer的,它只能安全地转型为它实现的接口或父类。Character还实现 了另外一个接口java.lang.Comparable,如果同时出现两个参数分别为Serializable和 Comparable的重载方法,那它们在此时的优先级是一样的。编译器无法确定要自动转型为哪种类型,会提示“类型模糊”(Type Ambiguous),并拒绝编译。程序必须在调用时显式地指定字面量的静态类型,如:sayHello((Comparable)‘a’),才能编译通过。但是如果读者愿意花费一点时间,绕过Javac编译器,自己去构造出表达相同语义的字节码,将会发现这是能够通过Java虚拟机的类加载校验,而且能够被Java虚拟机正常执行的,但是会选择Serializable还是Comparable的重载方法则并不能事先确定。

下面继续注释掉sayHello(Serializable arg)方法,输出会变为:

hello Object

这时是char装箱后转型为父类了,如果有多个父类,那将在继承关系中从下往上开始搜索,越接上层的优先级越低。即使方法调用传入的参数值为null时,这个规则仍然适用。我们把sayHello(Object arg)也注释掉,输出将会变为:

hello char...

7个重载方法已经被注释得只剩1个了,可见变长参数的重载优先级是最低的,这时候字符’a’被当作了一个char[]数组的元素。笔者使用的是char类型的变长参数,读者在验证时还可以选择int类型、 Character类型、Object类型等的变长参数重载来把上面的过程重新折腾一遍。但是要注意的是,有一些在单个参数中能成立的自动转型,如char转型为int,在变长参数中是不成立的。

解析与分派这两者之间的关系并不是二选一的排他关系,它们是在不同层次上去筛选、确定目标方法的过程。例如前面说过静态方法会在编译期确定、在类加载期就进行解析,而静态方法显然也是可以拥有重载版本的,选择重载版本的过程也是通过静态分派完成的。

9.2.2.2 动态分配

了解了静态分派,我们接下来看一下Java语言里动态分派的实现过程,它与Java语言多态性的另外一个重要体现——重写(Override)有着很密切的关联。

public class DynamicDispatch 
{ 
	static abstract class Human { 
		protected abstract void sayHello(); 
	}
	static class Man extends Human { 
	@Override 
    protected void sayHello() { 								System.out.println("man say hello"); 
	} 
	}
	
	static class Woman extends Human { 
	@Override 
	protected void sayHello() { 								System.out.println("woman say hello"); 
	} 
	}
	public static void main(String[] args) { 
	Human man = new Man(); 
	Human woman = new Woman(); 
	man.sayHello(); 
	woman.sayHello(); 
	man = new Woman(); 
	man.sayHello(); 
	}
}

运行结果:

man say hello 
woman say hello 
woman say hello

显然这里选择调用的方法版本是不可能再根据静态类型来决定的,因为静态类型同样都是Human的两个变量man和woman在调用sayHello()方法时产生了不同的行为,甚至变量man在两次调用中还执行了两个不同的方法。导致这个现象的原因很明显,是因为这两个变量的实际类型不同,Java虚拟机是如何根据实际类型来分派方法执行版本的呢?我们使用javap命令输出这段代码的字节码,尝试从中寻 找答案

image-20210824212209122

0~15行的字节码是准备动作,作用是建立man和woman的内存空间、调用Man和Woman类型的实例构造器,将这两个实例的引用存放在第1、2个局部变量表的变量槽中,这些动作实际对应了Java源码中的这两行:

Human man = new Man(); 
Human woman = new Woman();

接下来的16~21行是关键部分,16和20行的aload指令分别把刚刚创建的两个对象的引用压到栈顶,这两个对象是将要执行的sayHello()方法的所有者,称为接收者(Receiver);17和21行是方法调用指令,这两条调用指令单从字节码角度来看,无论是指令(都是invokevirtual)还是参数(都是常量池中第22项的常量,注释显示了这个常量是Human.sayHello()的符号引用)都完全一样,但是这两句指令最终执行的目标方法并不相同。那看来解决问题的关键还必须从invokevirtual指令本身入手,要弄清楚它是如何确定调用方法版本、如何实现多态查找来着手分析才行。根据《Java虚拟机规范》,invokevirtual指令的运行时解析过程大致分为以下几步:

  1. 找到操作数栈顶的第一个元素所指向的对象的实际类型,记作C。
  2. 如果在类型C中找到与常量中的描述符和简单名称都相符的方法,则进行访问权限校验,如果通过则返回这个方法的直接引用,查找过程结束;不通过则返回java.lang.IllegalAccessError异常。
  3. 否则,按照继承关系从下往上依次对C的各个父类进行第二步的搜索和验证过程。
  4. 如果始终没有找到合适的方法,则抛java.lang.AbstractMethodError异常。

正是因为invokevirtual指令执行的第一步就是在运行期确定接收者的实际类型,所以两次调用中的invokevirtual指令并不是把常量池中方法的符号引用解析到直接引用上就结束了,还会根据方法接收者的实际类型来选择方法版本,这个过程就是Java语言中方法重写的本质。我们把这种在运行期根据实际类型确定方法执行版本的分派过程称为动态分派

既然这种多态性的根源在于虚方法调用指令invokevirtual的执行逻辑,那自然我们得出的结论就只会对方法有效,对字段是无效的,因为字段不使用这条指令。事实上,在Java里面只有虚方法存在,字段永远不可能是虚的,换句话说,字段永远不参与多态,哪个类的方法访问某个名字的字段时,该名字指的就是这个类能看到的那个字段。当子类声明了与父类同名的字段时,虽然在子类的内存中两个字段都会存在,但是子类的字段会遮蔽父类的同名字段。(即字段是父类.字段得到的是父类的字段 子类.字段得到的是子类的字段。这里的父类子类指的是变量的“静态类型/外观类型”而不是实际类型,实际类型用于invokevirtual指令中方法的动态指定。)

字段不参与多态:

public class FieldHasNoPolymorphic 
{ 
	static class Father { 
	public int money = 1; 
	public Father() 
	{ money = 2; showMeTheMoney(); }
	public void showMeTheMoney() 
	{ System.out.println("I am Father, i have $" + money); } }
	static class Son extends Father { 
        public int money = 3; 
	public Son() 
	{ money = 4;showMeTheMoney(); }
	public void showMeTheMoney() 
	{ System.out.println("I am Son, i have $" + money); } }
	public static void main(String[] args) 
	{ 
	Father gay = new Son(); 
	System.out.println("This gay has $" + gay.money); 
} }

运行结果:

I am Son, i have $0 
I am Son, i have $4 
This gay has $2

输出两句都是“I am Son”,这是因为Son类在创建的时候,首先隐式调用了Father的构造函数,而Father构造函数中对showMeTheMoney()的调用是一次虚方法调用,实际执行的版本是Son::showMeTheMoney()方法,所以输出的是“I am Son”,这点经过前面的分析相信读者是没有疑问的了。而这时候虽然父类的money字段已经被初始化成2了,但Son::showMeTheMoney()方法中访问的是子类的money字段,这时候结果自然还是0,因为它要到子类的构造函数执行时才会被初始化。main()的最后一句通过静态类型访问到了父类中的money,输出了2。

9.2.2.3 单分派与多分派

方法的接收者与方法的参数统称为方法的宗量,根据分派基于多少种宗量,可以将分派划分为单分派和多分派两种。单分派是根据一个宗量对目标方法进行选择,多分派则是根据多于一个宗量对目标方法进行选择。

单分派与多分派演示:

/*** 单分派、多分派演示 *  */ 
public class Dispatch 
{ 
	static class QQ {} 
	static class _360 {} 
	public static class Father { 
	public void hardChoice(QQ arg) { 							System.out.println("father choose qq"); 
	}
	public void hardChoice(_360 arg) { 							System.out.println("father choose 360"); 
	} 
	}
	public static class Son extends Father { 
	public void hardChoice(QQ arg) { 							System.out.println("son choose qq"); 
	}
	public void hardChoice(_360 arg) { 							System.out.println("son choose 360"); } 
	}
	public static void main(String[] args) { 
	Father father = new Father(); 
	Father son = new Son(); 
	father.hardChoice(new _360()); 
	son.hardChoice(new QQ()); 
	} 
}

结果:

father choose 360 
son choose qq

在main()里调用了两次hardChoice()方法,这两次hardChoice()方法的选择结果在程序输出中已经显示得很清楚了。我们关注的首先是编译阶段中编译器的选择过程,也就是静态分派的过程。这时候选择目标方法的依据有两点:一是静态类型是Father还是Son,二是方法参数是QQ还是360。这次选择结果的最终是产生了两条invokevirtual指令,两条指令的参数分别为常量池中指向Father::hardChoice(360)及Father::hardChoice(QQ)方法的符号引用。(参考前面的静态分配,适用于重载的情况, 编译器编译时只会考虑静态类型而不是实际类型,所以两个invokevirtual指令参数是Father类的两个方法的符号引用)因为是根据两个宗量进行选择,所以Java语言的静态分派属于多分派类型

再看看运行阶段中虚拟机的选择,也就是动态分派的过程。在执行“son.hardChoice(new QQ())”这行代码时,更准确地说,是在执行这行代码所对应的invokevirtual指令时,由于编译期已经决定目标方法的签名必须为hardChoice(QQ),虚拟机此时不会关心传递过来的参数“QQ”到底是“腾讯QQ”还是“奇瑞QQ”,因为这时候参数的静态类型、实际类型都对方法的选择不会构成任何影响,唯一可以影响虚拟机选择的因素只有该方法的接受者的实际类型是Father还是Son。因为只有一个宗量作为选择依据,所以Java语言的动态分派属于单分派类型

9.2.2.4 虚拟机动态分配的实现

动态分派是执行非常频繁的动作,而且动态分派的方法版本选择过程需要运行时在接收者类型的方法元数据中搜索合适的目标方法,因此,Java虚拟机实现基于执行性能的考虑,真正运行时一般不会如此频繁地去反复搜索类型元数据。面对这种情况,一种基础而且常见的优化手段是为类型方法区中建立一个虚方法表(Virtual Method Table,也称为vtable,与此对应的,在invokeinterface执行时也会用到接口方法表——Interface Method Table,简称itable),使用虚方法表索引来代替元数据查找以提高性能

虚方法表结构实例:

image-20210825094606581

虚方法表中存放着各个方法的实际入口地址。如果某个方法在子类中没有被重写,那子类的虚方法表中的地址入口和父类相同方法的地址入口是一致的,都指向父类的实现入口。如果子类中重写了这个方法,子类虚方法表中的地址也会被替换为指向子类实现版本的入口地址。在图中,Son重写了来自Father的全部方法,因此Son的方法表没有指向Father类型数据的箭头。但是Son和Father都没有重写来自Object的方法,所以它们的方法表中所有从Object继承来的方法都指向了Object的数据类型。

为了程序实现方便,具有相同签名的方法,在父类、子类的虚方法表中都应当具有一样的索引序号,这样当类型变换时,仅需要变更查找的虚方法表,就可以从不同的虚方法表中按索引转换出所需的入口地址。虚方法表一般在类加载的连接阶段进行初始化准备了类的变量初始值后,虚拟机会把该类的虚方法表也一同初始化完毕。

上文中笔者提到了查虚方法表是分派调用的一种优化手段,由于Java对象里面的方法默认(即不使用final修饰)就是虚方法,虚拟机除了使用虚方法表之外,为了进一步提高性能,还会使用类型继承关系分析(Class Hierarchy Analysis,CHA)、守护内联(Guarded Inlining)、内联缓存(Inline Cache)等多种非稳定的激进优化来争取更大的性能空间

9.3 动态类型语言支持

Java虚拟机的字节码指令集的数量自从Sun公司的第一款Java虚拟机问世至今,二十余年间只新增过一条指令,它就是随着JDK 7的发布的字节码首位新成员——invokedynamic指令。这条新增加的指令是JDK 7的项目目标:实现动态类型语言(Dynamically Typed Language)支持而进行的改进之一,也是为JDK 8里可以顺利实现Lambda表达式而做的技术储备。

9.3.1 动态类型语言

动态类型语言的关键特征是它的类型检查的主体过程是在运行期而不是编 译期进行的,满足这个特征的语言有很多,常用的包括:APL、Clojure、Erlang、Groovy、JavaScript、Lisp、Lua、PHP、Prolog、Python、Ruby、Smalltalk、Tcl,等等。那相对地,在编译期就 进行类型检查过程的语言,譬如C++和Java等就是最常用的静态类型语言。

public static void main(String[] args) { 
int[][][] array = new int[1][0][-1]; 
}

上面这段Java代码能够正常编译,但运行的时候会出现NegativeArraySizeException异常。在《Java虚拟机规范》中明确规定了NegativeArraySizeException是一个运行时异常(Runtime Exception),通俗一点说,运行时异常就是指只要代码不执行到这一行就不会出现问题。与运行时异常相对应的概念是连接时异常,例如很常见的NoClassDefFoundError便属于连接时异常,即使导致连接时异常的代码放在一条根本无法被执行到的路径分支上,类加载时(第7章解释过Java的连接过程不在编译阶段,而在类加载阶段)也照样会抛出异常。

不过,在C语言里,语义相同的代码就会在编译期就直接报错,而不是等到运行时才出现异常:

int main(void) { 
int i[1][0][-1]; 
// GCC拒绝编译,报“size of array is negative” 
return 0; }

什么是“类型检查”?

obj.println("hello world");

现在先假设这行代码是在Java语言中,并且变量obj的静态类型为java.io.PrintStream,那变量obj的实际类型就必须是PrintStream的子类(实现了PrintStream接口的类)才是合法的。否则,哪怕obj属于一个确实包含有println(String)方法相同签名方法的类型,但只要它与PrintStream接口没有继承关系,代码依然不可能运行——因为类型检查不合法

但是相同的代码在ECMAScript(JavaScript)中情况则不一样,无论obj具体是何种类型,无论其继承关系如何,只要这种类型的方法定义中确实包含有println(String)方法,能够找到相同签名的方法,调用便可成功。

产生这种差别产生的根本原因是Java语言在编译期间却已将println(String)方法完整的符号引用(本例中为CONSTANT_InterfaceMethodref_info常量/注意 编译期间产生的class文件中invoke指令参数都是符号引用 到类加载阶段或运行中再转为直接引用)生成出来,并作为方法调用指令的参数存储到Class文件中

invokevirtual #4; //Method java/io/PrintStream.println:(Ljava/lang/String;)V

这个符号引用包含了该方法定义在哪个具体类型之中、方法的名字以及参数顺序、参数类型和方法返回值等信息,通过这个符号引用,Java虚拟机就可以翻译出该方法的直接引用。而ECMAScript等动态类型语言与Java有一个核心的差异就是变量obj本身并没有类型变量obj的值才具有类型,所以编译器在编译时最多只能确定方法名称、参数、返回值这些信息,而不会去确定方法所在的具体类型(即方法接收者不固定)。“变量无类型而变量值才有类型”这个特点也是动态类型语言的一个核心特征。

9.3.2 Java与动态模型

Java虚拟机层面对动态类型语言的支持一直都还有所欠缺,主要表现在方法调用方面:JDK 7以前的字节码指令集中,4条方法调用指令(invokevirtual、invokespecial、invokestatic、invokeinterface)的第一个参数都是被调用的方法的符号引用(CONSTANT_Methodref_info或者CONSTANT_InterfaceMethodref_info常量),前面已经提到过,方法的符号引用在编译时产生,而动态类型语言只有在运行期才能确定方法的接收者。这样,在Java虚拟机上实现的动态类型语言就不得不使用“曲线救国”的方式(如编译时留个占位符类型,运行时动态生成字节码实现具体类型到占位符类型的适配)来实现,但这样势必会让动态类型语言实现的复杂度增加,也会带来额外的性能和内存开销。内存开销是很显而易见的,方法调用产生的那一大堆的动态类就摆在那里。而其中最严重的性能瓶颈是在于动态类型方法调用时,由于无法确定调用对象的静态类型,而导致的方法内联无法有效进行

尽管也可以想一些办法(譬如调用点缓存)尽量缓解支持动态语言而导致的性能下降,但这种改善毕竟不是本质的。譬如有类似以下代码:

var arrays = {"abc", new ObjectX(), 123, Dog, Cat, Car..} for(item in arrays)
{ item.sayHello(); }

在动态类型语言下这样的代码是没有问题,但由于在运行时arrays中的元素可以是任意类型,即使它们的类型中都有sayHello()方法,也肯定无法在编译优化的时候就确定具体sayHello()的代码在哪里,编译器只能不停编译它所遇见的每一个sayHello()方法,并缓存起来供执行时选择、调用和内联,如果arrays数组中不同类型的对象很多,就势必会对内联缓存产生很大的压力,缓存的大小总是有限的,**类型信息的不确定性导致了缓存内容不断被失效和更新,先前优化过的方法也可能被不断替换而无法重复使用。**所以这种动态类型方法调用的底层问题终归是应当在Java虚拟机层次上去解决才最合适。因此,在Java虚拟机层面上提供动态类型的直接支持就成为Java平台发展必须解决的问题,这便是JDK 7时JSR-292提案中invokedynamic指令以及java.lang.invoke包出现的技术背景。

9.3.3 Java.lang.invoke包

JDK 7时新加入的java.lang.invoke包是JSR 292的一个重要组成部分,这个包的主要目的是在之前单纯依靠符号引用来确定调用的目标方法这条路之外,提供一种新的动态确定目标方法的机制,称为“方法句柄”(Method Handle)。

把方法句柄与C/C++中的函数指针(Function Pointer),或者C#里面的委派(Delegate)互相类比一下来理解。举个例子,如果我们要实现一个带谓词(谓词就是由外部传入的排序时比较大小的动作)的排序函数,在C/C++中的常用做法是把谓词定义为函数,用函数指针来把谓词传递到排序方法,像这样:

void sort(int list[], const int size, int (*compare)(int, int))

但在Java语言中做不到这一点,没有办法单独把一个函数作为参数进行传递。普遍的做法是设计 一个带有compare()方法的Comparator接口,以实现这个接口的对象作为参数,例如Java类库中的 Collections::sort()方法就是这样定义的:

void sort(List list, Comparator c)

不过,在拥有方法句柄之后,Java语言也可以拥有类似于函数指针或者委托的方法别名这样的工具了。下面代码演示了方法句柄的基本用法,无论obj是何种类型(临时定义的ClassA抑或是实现PrintStream接口的实现类System.out),都可以正确调用到println()方法。

import static java.lang.invoke.MethodHandles.lookup;

import java.lang.invoke.MethodHandle;
import java.lang.invoke.MethodType;

/*** JSR 292 MethodHandle基础用法演示 * @author zzm */
public class MethodHandleTest {
    static class ClassA {
        public void println(String s) {
            System.out.println(s);
        }
    }

    public static void main(String[] args) throws Throwable {
        Object obj = System.currentTimeMillis() % 2 == 0 ? System.out : new ClassA();
        // 无论obj最终是哪个实现类,下面这句都能正确调用到println方法。
        getPrintlnMH(obj).invokeExact("icyfenix");
    }
    private static MethodHandle getPrintlnMH(Object reveiver) throws Throwable {
        // MethodType:代表“方法类型”,包含了方法的返回值(methodType()的第一个参数)和 具体参数(methodType()第二个及以后的参数)。
        MethodType mt = MethodType.methodType(void.class, String.class);
        // lookup()方法来自于MethodHandles.lookup,这句的作用是在指定类中查找符合给定的方法名称、方法类型,并且符合调用权限的方法句柄。
        // 因为这里调用的是一个虚方法,按照Java语言的规则,方法第一个参数是隐式的,代表该方法的接收者,也即this指向的对象,这个参数以前是放在参数列表中进行传递,现在提供了bindTo() 方法来完成这件事情。
        return lookup().findVirtual(reveiver.getClass(), "println", mt).bindTo(reveiver); } 
}

方法getPrintlnMH()中实际上是模拟了invokevirtual指令的执行过程,只不过它的分派逻辑并非固化在Class文件的字节码上,而是通过一个由用户设计的Java方法来实现。这个方法本身的返回值(MethodHandle对象),可以视为对最终调用方法的一个“引用”。以此为基础,有了MethodHandle就可以写出类似于C/C++那样的函数声明了:

void sort(List list, MethodHandle compare)

确实,仅站在Java语言的角度看,MethodHandle在使用方法和效果上与Reflection有众多相似之处。不过,它们也有以下这些区别:

  • Reflection和MethodHandle机制本质上都是在模拟方法调用,但是Reflection是在模拟Java代码层次的方法调用,而MethodHandle是在模拟字节码层次的方法调用。在MethodHandles.Lookup上的3个方法 findStatic()、findVirtual()、findSpecial()正是为了对应于invokestatic、invokevirtual(以及invokeinterface)和invokespecial这几条字节码指令的**执行权限校验行为,**而这些底层细节在使用Reflection API时是不需要关心的。
  • Reflection中的java.lang.reflect.Method对象远比MethodHandle机制中的java.lang.invoke.MethodHandle对象所包含的信息来得多。前者是方法在Java端的全面映像,包含了方法的签名、描述符以及方法属性表中各种属性的Java端表示方式,还包含执行权限等的运行期信息。而后者仅包含执行该方法的相关信息。用开发人员通俗的话来讲,Reflection是重量级,而MethodHandle是轻量级。
  • 由于MethodHandle是对字节码的方法指令调用的模拟,那理论上虚拟机在这方面做的各种优化(如方法内联),在MethodHandle上也应当可以采用类似思路去支持(但目前实现还在继续完善中),而通过反射去调用方法则几乎不可能直接去实施各类调用点优化措施。

MethodHandle与Reflection除了上面列举的区别外,最关键的一点还在于去掉前面讨论施加的前提“仅站在Java语言的角度看”之后:Reflection API的设计目标是只为Java语言服务的,而MethodHandle则设计为可服务于所有Java虚拟机之上的语言,其中也包括了Java语言而已,而且Java在这里并不是主角。

9.3.4 invokedynamic指令

可以说invokedynamic指令与MethodHandle机制的作用是一样的,都是**为了解决原有4条“invoke*”指令方法分派规则完全固化在虚拟机之中的问题,把如何查找目标方法的决定权从虚拟机转嫁到具体用户代码之中,让用户(广义的用户,包含其他程序语言的设计者)有更高的自由度。**而且,它们两者的思路也是可类比的,都是为了达成同一个目的,只是一个用上层代码和API来实现,另一个用字节码和Class中其他属性、常量来完成。因此,如果前面MethodHandle的例子看懂了,相信读者理解invokedynamic指令并不困难。

每一处含有invokedynamic指令的位置都被称作“动态调用点(Dynamically-Computed Call Site)”,这条指令的第一个参数不再是代表方法符号引用的CONSTANT_Methodref_info常量,而是变为JDK 7时新加入的CONSTANT_InvokeDynamic_info常量,从这个新常量中可以得到3项信息:引导方法(Bootstrap Method,该方法存放在新增的BootstrapMethods属性中)、方法类型(MethodType)和名称。引导方法是有固定的参数,并且返回值规定是java.lang.invoke.CallSite对象,这个对象代表了真正要执行的目标方法调用。根据CONSTANT_InvokeDynamic_info常量中提供的信息,虚拟机可以找到并且执行引导方法,从而获得一个CallSite对象,最终调用到要执行的目标方法上。

InvokeDynamic指令演示:

import static java.lang.invoke.MethodHandles.lookup;
import java.lang.invoke.CallSite;
import java.lang.invoke.ConstantCallSite;
import java.lang.invoke.MethodHandle;
import java.lang.invoke.MethodHandles;
import java.lang.invoke.MethodType;

public class InvokeDynamicTest {
    public static void main(String[] args) throws Throwable {
        INDY_BootstrapMethod().invokeExact("icyfenix");
    }

    public static void testMethod(String s) {
        System.out.println("hello String:" + s);
    }

    public static CallSite BootstrapMethod(MethodHandles.Lookup lookup, String name, MethodType mt) throws Throwable {
        return new ConstantCallSite(lookup.findStatic(InvokeDynamicTest.class, name, mt));
    }

    private static MethodType MT_BootstrapMethod() {
        return MethodType.fromMethodDescriptorString("(Ljava/lang/invoke/MethodHandles$Lookup;Ljava/lang/String; Ljava/lang/invoke/MethodType;)Ljava/lang/invoke/CallSite;", null);
    }

    private static MethodHandle MH_BootstrapMethod() throws Throwable {
        return lookup().findStatic(InvokeDynamicTest.class, "BootstrapMethod", MT_BootstrapMethod());
    }

    private static MethodHandle INDY_BootstrapMethod() throws Throwable {
        CallSite cs = (CallSite) MH_BootstrapMethod().invokeWithArguments(lookup(), "testMethod", MethodType.fromMethodDescriptorString("(Ljava/lang/String;)V", null));
        return cs.dynamicInvoker();
    }
}

这段代码与前面MethodHandleTest的作用基本上是一样的,虽然笔者没有加以注释,但是阅读起来应当也不困难。要是真没读懂也不要紧,笔者没写注释的主要原因是这段代码并非写给人看的,只是为了方便编译器按照笔者的意愿来产生一段字节码而已。前文提到过,由于invokedynamic指令面向的主要服务对象并非Java语言,而是其他Java虚拟机之上的其他动态类型语言,因此,光靠Java语言的编译器Javac的话,在JDK 7时甚至还完全没有办法生成带有invokedynamic指令的字节码(曾经有一个java.dyn.InvokeDynamic的语法糖可以实现,但后来被取消了),而到JDK 8引入了Lambda表达式和接口默认方法后,Java语言才算享受到了一点invokedynamic指令的好处,但用Lambda来解释invokedynamic指令运作就比较别扭,也无法与前面MethodHandle的例子对应类比。

invokeDynamic指令演示:

image-20210825134423267

从main()方法的字节码中可见,原本的方法调用指令已经被替换为invokedynamic了,它的参数为第123项常量(第二个值为0的参数在虚拟机中不会直接用到,这与invokeinterface指令那个的值为0的参数一样是占位用的,目的都是为了给常量池缓存留出足够的空间):

2: invokedynamic #123, 0 // InvokeDynamic #0:testMethod:(Ljava/lang/String;)V

从常量池中可见,第123项常量显示“#123=InvokeDynamic#0:#121”说明它是一项CONSTANT_InvokeDynamic_info类型常量,常量值中前面“#0”代表引导方法取Bootstrap Methods属性表的第0项(javap没有列出属性表的具体内容,不过示例中仅有一个引导方法,即BootstrapMethod()),而后面的“#121”代表引用第121项类型为CONSTANT_NameAndType_info的常 量,从这个常量中可以获取到方法名称和描述符,即后面输出的“testMethod: (Ljava/lang/String;)V”。 再看BootstrapMethod(),这个方法在Java源码中并不存在,是由INDY产生的,但是它的字节码很容易读懂,所有逻辑都是调用MethodHandles$Lookup的findStatic()方法,产生testMethod()方法的 MethodHandle,然后用它创建一个ConstantCallSite对象。最后,这个对象返回给invokedynamic指令实现对testMethod()方法的调用,invokedynamic指令的调用过程到此就宣告完成了。

9.3.5 实战:掌控方法分派规则

invokedynamic指令与此前4条传统的“invoke*”指令的最大区别就是它的分派逻辑不是由虚拟机决定的,而是由程序员决定。

方法调用问题:

class GrandFather { 
void thinking() { System.out.println("i amgrandfather");} 
}
class Father extends GrandFather { 
void thinking() { System.out.println("i am father"); } 
}

class Son extends Father { 
void thinking() { 
// 请读者在这里填入适当的代码(不能修改其他地方的代码) 
// 实现调用祖父类的thinking()方法,打印"i am grandfather" } }

在Java程序中,可以通过“super”关键字很方便地调用到父类中的方法,但如果要访问祖类的方法呢?不妨自己思考一下,在JDK 7之前有没有办法解决这 个问题。

在拥有invokedynamic和java.lang.invoke包之前,使用纯粹的Java语言很难处理这个问题(使用ASM等字节码工具直接生成字节码当然还是可以处理的,但这已经是在字节码而不是Java语言层面来解决问题了),原因是在Son类的thinking()方法中根本无法获取到一个实际类型是GrandFather的对象引用,而invokevirtual指令的分派逻辑是固定的,只能按照方法接收者的实际类型进行分派,这个逻辑完全固化在虚拟机中,程序员无法改变。

使用MethodHandler(java.lang.invoke包)来解决问题:

import static java.lang.invoke.MethodHandles.lookup;

import java.lang.invoke.MethodHandle;
import java.lang.invoke.MethodType;

class Test {
    class GrandFather {
        void thinking() {
            System.out.println("i am grandfather");
        }
    }

    class Father extends GrandFather {
        void thinking() {
            System.out.println("i am father");
        }
    }

    class Son extends Father {
        void thinking() {
            try {
                MethodType mt = MethodType.methodType(void.class);
                MethodHandle mh = lookup().findSpecial(GrandFather.class, "thinking", mt, getClass());
                mh.invoke(this);
            } catch (Throwable e) {
            }
        }
    }

    public static void main(String[] args) {
        (new Test().new Son()).thinking();
    }
}

使用JDK 7 Update 9之前的HotSpot虚拟机运行,会得到如下运行结果:

i am grandfather

但是这个逻辑在JDK 7 Update 9之后被视作一个潜在的安全性缺陷修正了,原因是必须保证findSpecial()查找方法版本时受到的访问约束(譬如对访问控制的限制、对参数类型的限制)应与使用invokespecial指令一样,两者必须保持精确对等,包括在上面的场景中它只能访问到其直接父类中的方法版本。所以在JDK 7 Update 10修正之后,运行以上代码只能得到如下结果:

i am father

那在新版本的JDK中,上面的问题是否能够得到解决呢?答案是可以的,如果读者去查看MethodHandles.Lookup类的代码,将会发现需要进行哪些访问保护,在该API实现时是预留了后门的。访问保护是通过一个allowedModes的参数来控制,而且这个参数可以被设置成“TRUSTED”来绕开所有的保护措施。尽管这个参数只是在Java类库本身使用,没有开放给外部设置,但我们通过反射可以轻易打破这种限制。由此,我们可以把代码中子类的thinking()方法修改为如下所示的代码来解决问题:

void thinking(){
    try{
        MethodType mt=MethodType.methodType(void.class);
        Field   lookupImpl=MethodHandles.Lookup.class.getDeclaredField("IMPL_LOOKUP");
        lookupImpl.setAccessible(true);
        MethodHandle mh=((MethodHandles.Lookup)lookupImpl.get(null)).findSpecial(GrandFather.class,"thinking",mt,GrandFather.class);
        mh.invoke(this);
    }
    catch(Throwable e){}
}

运行以上代码,在目前所有JDK版本中均可获得如下结果:

i am grandfather

9.4 基于栈的字节码解释引擎

关于Java虚拟机是如何调用方法、进行版本选择的内容已经全部讲解完毕。

我们来探讨虚拟机是如何执行方法里面的字节码指令的。许多Java虚拟机的执行引擎在执行Java代码的时候都有解释执行(通过解释器执行)和编译执行(通过即时编译器产生本地代码执行)两种选择。

9.4.1 解释执行

Java语言经常被人们定位为“解释执行”的语言,但当主流的虚拟机中都包含了即时编译器后,Class文件中的代码到底会被解释执行还是编译执行,就成了只有虚拟机自己才能准确判断的事。再后来,Java也发展出可以直接生成本地代码的编译器(如Jaotc、GCJ,Excelsior JET),而C/C++语言也出现了通过解释器执行的版本(如CINT)

无论是解释还是编译,也无论是物理机还是虚拟机,对于应用程序,机器都不可能如人那样阅读、理解,然后获得执行能力。大部分的程序代码转换成物理机的目标代码或虚拟机能执行的指令集之前,都需要经过图中的各个步骤。

编译过程:

image-20210825141120599

如今,基于物理机、Java虚拟机,或者是非Java的其他高级语言虚拟机(HLLVM)的代码执行过程,大体上都会遵循这种符合现代经典编译原理的思路,在执行前先对程序源码进行词法分析和语法分析处理,把源码转化为抽象语法树(Abstract Syntax Tree,AST)。对于一门具体语言的实现来说,词法、语法分析以至后面的优化器和目标代码生成器都可以选择独立于执行引擎,形成一个完整意义的编译器去实现,这类代表是C/C++语言。也可以选择把其中一部分步骤(如生成抽象语法树之前的步骤)实现为一个半独立的编译器,这类代表是Java语言。又或者把这些步骤和执行引擎全部集中封装在一个封闭的黑匣子之中,如大多数的JavaScript执行引擎。

在Java语言中,Javac编译器完成了程序代码经过词法分析、语法分析到抽象语法树,再遍历语法树生成线性的字节码指令流的过程。因为这一部分动作是在Java虚拟机之外进行的,而解释器在虚拟机的内部,所以Java程序的编译就是半独立的实现。

9.4.2 基于栈的指令集和基于寄存器的指令集

Javac编译器输出的字节码指令流,基本上[1]是一种基于栈的指令集架构(Instruction Set Architecture,ISA),字节码指令流里面的指令大部分都是零地址指令,它们依赖操作数栈进行工作。与之相对的另外一套常用的指令集架构是基于寄存器的指令集,最典型的就是x86的二地址指令 集,如果说得更通俗一些就是现在我们主流PC机中物理硬件直接支持的指令集架构,这些指令依赖寄存器进行工作。

分别使用这两种指令集去计算“1+1”的结果,基于栈的指令集会是这样子的:

iconst_1 
iconst_1 
iadd 
istore_0

两条iconst_1指令连续把两个常量1压入栈后,iadd指令把栈顶的两个值出栈、相加,然后把结果放回栈顶,最后istore_0把栈顶的值放到局部变量表的第0个变量槽中。这种指令流中的指令通常都是不带参数的使用操作数栈中的数据作为指令的运算输入,指令的运算结果也存储在操作数栈之中。而如果用基于寄存器的指令集,那程序可能会是这个样子:

mov eax, 1 
add eax, 1

mov指令把EAX寄存器的值设为1,然后add指令再把这个值加1,结果就保存在EAX寄存器里面。这种二地址指令是x86指令集中的主流,每个指令都包含两个单独的输入参数,依赖于寄存器来访问和存储数据。

基于栈的指令集主要优点是可移植,因为寄存器由硬件直接提供,程序直接依赖这些硬件寄存器则不可避免地要受到硬件的约束。栈架构的指令集还有一些其他的优点,如代码相对更加紧凑(字节码中每个字节就对应一条指令,而多地址指令集中还需要存放参数)、编译器实现更加简单(不需要考虑空间分配的问题,所需空间都在栈上操作)等。

栈架构指令集的主要缺点是理论上执行速度相对来说会稍慢一些,所有主流物理机的指令集都是寄存器架构也从侧面印证了这点。不过这里的执行速度是要局限在解释执行的状态下,如果经过即时编译器输出成物理机上的汇编指令流,那就与虚拟机采用哪种指令集架构没有什么关系了(成汇编指令流之后两种方式都是用的寄存器了)。

在解释执行时,栈架构指令集的代码虽然紧凑,但是完成相同功能所需的指令数量一般会比寄存器架构来得更多,因为出栈、入栈操作本身就产生了相当大量的指令。更重要的是栈实现在内存中,频繁的栈访问也就意味着频繁的内存访问,相对于处理器来说,内存始终是执行速度的瓶颈。尽管虚拟机可以采取栈顶缓存的优化方法,把最常用的操作映射到寄存器中避免直接内存访问,但这也只是优化措施而不是解决本质问题的方法。因此由于指令数量和内存访问的原因,导致了栈架构指令集的执行速度会相对慢上一点。

9.4.3 基于栈的解释器执行过程

一段简单的算术代码 :

public int calc() { 
	int a = 100; 
	int b = 200; 
	int c = 300; 
	return (a + b) * c; 
}

直接使用javap命令看看它的字节码指令:

image-20210825142620782

javap提示这段代码需要深度为2的操作数栈和4个变量槽的局部变量空间

执行过程中的代码、操作数栈和局部变量表的变化情况如下:

1.首先,执行偏移地址为0的指令,Bipush指令的作用是将单字节的整型常量值(-128~127)推入操作数栈顶,跟随有一个参数,指明推送的常量值,这里是100。

image-20210825142724419

执行偏移地址为2的指令,istore_1指令的作用是将操作数栈顶的整型值出栈并存放到第1个局部变量槽中。后续4条指令(直到偏移为11的指令为止)都是做一样的事情,也就是在对应代码中把变量a、b、c赋值为100、200、300。这4条指令的图示略过。

image-20210825142827645

执行偏移地址为11的指令,iload_1指令的作用是将局部变量表第1个变量槽中的整型值复制到操作数栈顶。

image-20210825142853234

执行偏移地址为12的指令,iload_2指令的执行过程与iload_1类似,把第2个变量槽的整型值入栈。画出这个指令的图示主要是为了显示下一条iadd指令执行前的堆栈状况。

image-20210825142922040

执行偏移地址为13的指令,iadd指令的作用是将操作数栈中头两个栈顶元素出栈,做整型加法,然后把结果重新入栈。在iadd指令执行完毕后,栈中原有的100和200被出栈,它们的和300被重新入栈

image-20210825142949579

执行偏移地址为14的指令,iload_3指令把存放在第3个局部变量槽中的300入栈到操作数栈中。这时操作数栈为两个整数300。下一条指令imul是将操作数栈中头两个栈顶元素出栈,做整型乘法,然后把结果重新入栈,与iadd完全类似。

image-20210825143017158

执行偏移地址为16的指令,ireturn指令是方法返回指令之一,它将结束方法执行并将操作数栈顶的整型值返回给该方法的调用者。到此为止,这段方法执行结束。

image-20210825143040209

再次强调上面的执行过程仅仅是一种概念模型,虚拟机最终会对执行过程做出一系列优化来提高性能,实际的运作过程并不会完全符合概念模型的描述。更确切地说,实际情况会和上面描述的概念模型差距非常大,差距产生的根本原因是**虚拟机中解析器和即时编译器都会对输入的字节码进行优化,即使解释器中也不是按照字节码指令去逐条执行的。**例如在HotSpot虚拟机中,就有很多以“fast_”开头的非标准字节码指令用于合并、替换输入的字节码以提升解释执行性能,即时编译器的优化手段则更是花样繁多。

10 类加载及执行子系统案例与实战

在Class文件格式与执行引擎这部分里,用户的程序能直接参与的内容并不太多,Class文件以何种格式存储,类型何时加载、如何连接,以及虚拟机如何执行字节码指令等都是由虚拟机直接控制的行为,用户程序无法对其进行改变。能通过程序进行操作的,主要是字节码生成类加载器这两部分的功能。

(Java虚拟机设计团队有意把类加载阶段中的“通过一个类的全限定名来获取描述该类的二进制字节流”这个动作放到Java虚拟机外部去实现,以便让应用程序自己决定如何去获取所需的类。实现这个动作的代码被称为“类加载器”(Class Loader)。 )

java源程序—Javac编译器—》java字节码class文件—类加载过程(注意类加载过程7个步骤中第一个步骤加载就用到了类加载器)—》使用

在加载阶段,Java虚拟机需要完成以下三件事情:

  • 通过一个类的全限定名来获取定义此类的二进制字节流。
  • 将这个字节流所代表的静态存储结构转化为方法区的运行时数据结构。
  • 内存中生成一个代表这个类的java.lang.Class对象,作为方法区这个类的各种数据的访问入口。

10.1 案例分析

10.1.1 Tomcat:正统的类加载器架构

主流的Java Web服务器,如Tomcat、Jetty、WebLogic、WebSphere等等,都实现了自己定义的类加载器,而且一般还都不止一个。因为一个功能健全的Web服务器,都要解决如下的这些问题:

  • 部署在同一个服务器上的两个Web应用程序所使用的Java类库可以实现相互隔离。这是最基本的需求,两个不同的应用程序可能会依赖同一个第三方类库的不同版本,不能要求每个类库在一个服务器中只能有一份,服务器应当能够保证两个独立应用程序的类库可以互相独立使用。
  • 部署在同一个服务器上的两个Web应用程序所使用的Java类库可以互相共享。这个需求与前面一点正好相反,但是也很常见,例如用户可能有10个使用Spring组织的应用程序部署在同一台服务器 上,如果把10份Spring分别存放在各个应用程序的隔离目录中,将会是很大的资源浪费——这主要倒不是浪费磁盘空间的问题,而是指类库在使用时都要被加载到服务器内存如果类库不能共享,虚拟机的方法区就会很容易出现过度膨胀的风险(因为类加载阶段会在方法区生成其对应的运行时数据结构)。
  • 服务器需要尽可能地保证自身的安全不受部署的Web应用程序影响。目前,有许多主流的JavaWeb服务器自身也是使用Java语言来实现的。因此服务器本身也有类库依赖的问题,一般来说,基于安全考虑,服务器所使用的类库应该与应用程序的类库互相独立。
  • 支持JSP应用的Web服务器,十有八九都需要支持HotSwap功能。我们知道JSP文件最终要被编译成Java的Class文件才能被虚拟机执行,但JSP文件由于其纯文本存储的特性,被运行时修改的概率远大于第三方类库或程序自己的Class文件。而且ASP、PHP和JSP这些网页应用也把修改后无须重启作为一个很大的“优势”来看待,因此“主流”的Web服务器都会支持JSP生成类的热替换,当然也有“非主流”的,如运行在生产模式(Production Mode)下的WebLogic服务器默认就不会处理JSP文件的变化。

所以在部署Web应用时,单独的一个ClassPath就不能满足需求了,所以各种Web服务器都不约而同地提供了好几个有着不同含义的ClassPath路径供用户存放第三方类库,这些路径一般会以 “lib” 或 “classes”命名。被放置到不同路径中的类库,具备不同的访问范围和服务对象,通常每一个目录都会有一个相应的自定义类加载器去加载放置在里面的Java类库

下面分析Tomcat具体是如何规划用户类库结构和类加载器的。

在Tomcat目录结构中,可以设置3组目录(/common/*、/server/和/shared/,但默认不一定是开放的,可能只有/lib/目录存在)用于存放Java类库,另外还应该加上Web应用程序自身的“/WEBINF/”目录,一共4组。把Java类库放置在这4组目录中,每一组都有独立的含义,分别是:

  • 放置在/common目录中。类库可被Tomcat和所有的Web应用程序共同使用。
  • 放置在/server目录中。类库可被Tomcat使用,对所有的Web应用程序都不可见。
  • 放置在/shared目录中。类库可被所有的Web应用程序共同使用,但对Tomcat自己不可见。
  • 放置在/WebApp/WEB-INF目录中。类库仅仅可以被该Web应用程序使用,对Tomcat和其他Web应用程序都不可见。

为了支持这套目录结构,并对目录里面的类库进行加载和隔离,Tomcat自定义了多个类加载器,这些类加载器按照经典的双亲委派模型来实现,其关系如图所示:

image-20210825183931956

灰色背景的3个类加载器是JDK(以JDK 9之前经典的三层类加载器为例)默认提供的类加载器,这3个加载器的作用已经介绍过了。而Common类加载器、Catalina类加载器(也称为Server类加载器)、Shared类加载器和Webapp类加载器则是Tomcat自己定义的类加载器,它们分别加载/common/、/server/、/shared/*和/WebApp/WEB-INF/*中的Java类库。其中WebApp类加载器和JSP类加载器通常还会存在多个实例,每一个Web应用程序对应一个WebApp类加载器,每一个JSP文件对应一个JasperLoader类加载器。

从图中的委派关系中可以看出,Common类加载器能加载的类都可以被Catalina类加载器和Shared类加载器使用,而Catalina类加载器和Shared类加载器自己能加载的类则与对方相互隔离。WebApp类加载器可以使用Shared类加载器加载到的类,但各个WebApp类加载器实例之间相互隔离。而JasperLoader的加载范围仅仅是这个JSP文件所编译出来的那一个Class文件,它存在的目的就是为了被丢弃:当服务器检测到JSP文件被修改时,会替换掉目前的JasperLoader的实例,并通过再建立一个新的JSP类加载器来实现JSP文件的HotSwap功能

本例中的类加载结构在Tomcat 6以前是它默认的类加载器结构,在Tomcat 6及之后的版本简化了默认的目录结构,只有指定了tomcat/conf/catalina.properties配置文件的server.loader和share.loader项后才会真正建立Catalina类加载器和Shared类加载器的实例,否则会用到这两个类加载器的地方都会用Common类加载器的实例代替,而默认的配置文件中并没有设置这两个loader项,所以Tomcat 6之后也顺理成章地把/common、/server和/shared这3个目录默认合并到一起变成1个**/lib目录**,这个目录里的类库相当于以前/common目录中类库的作用,是Tomcat的开发团队为了简化大多数的部署场景所做的一项易用性改进。如果默认设置不能满足需要,用户可以通过修改配置文件指定server.loader和share.loader的方式重新启用原来完整的加载器架构。

10.1.2 OSGI: 灵活的类加载器结构

OSGi(Open Service Gateway Initiative)是OSGi联盟(OSGi Alliance)制订的一个基于Java语言的动态模块化规范(在JDK 9引入的JPMS是静态的模块系统)

OSGi中的每个模块(称为Bundle)与普通的Java类库区别并不太大,两者一般都以JAR格式进行封装,并且内部存储的都是Java的Package和Class。但是一个Bundle可以声明它所依赖的Package(通过Import-Package描述),也可以声明它允许导出发布的Package(通过Export-Package描述)。在OSGi里面,Bundle之间的依赖关系从传统的上层模块依赖底层模块转变为平级模块之间的依赖,而且类库的可见性能得到非常精确的控制,一个模块里只有被Export过的Package才可能被外界访问,其他的Package和Class将会被隐藏起来。

在今天,通常引入OSGi的主要理由是基于OSGi架构的程序很可能(只是很可能,并不是一定会,需要考虑热插拔后的内存管理、上下文状态维护问题等复杂因素)会实现模块级的热插拔功能,当程序升级更新或调试除错时,可以只停用、重新安装然后启用程序的其中一部分,这对大型软件、企业级程序开发来说是一个非常有诱惑力的特性,譬如Eclipse中安装、卸载、更新插件而不需要重启动,就使用到了这种特性

OSGi之所以能有上述诱人的特点,必须要归功于它灵活的类加载器架构。OSGi的Bundle类加载器之间只有规则,没有固定的委派关系。例如,某个Bundle声明了一个它依赖的Package,如果有其他Bundle声明了发布这个Package后,那么所有对这个Package的类加载动作都会委派给发布它的Bundle类加载器去完成。不涉及某个具体的Package时,各个Bundle加载器都是平级的关系只有具体使用到某个Package和Class的时候,才会根据Package导入导出定义来构造Bundle间的委派和依赖

另外,一个Bundle类加载器为其他Bundle提供服务时,会根据Export-Package列表严格控制访问范围。如果一个类存在于Bundle的类库中但是没有被Export,那么这个Bundle的类加载器能找到这个类,但不会提供给其他Bundle使用,而且OSGi框架也不会把其他Bundle的类加载请求分配给这个Bundle来处理。

假设存在Bundle A、Bundle B、BundleC3个模块,并且这3个Bundle定义的依赖关系如下所示。

  • Bundle A:声明发布了packageA,依赖了java.*的包;
  • Bundle B:声明依赖了packageA和packageC,同时也依赖了java.*的包;
  • Bundle C:声明发布了packageC,依赖了packageA。

那么,这3个Bundle之间的类加载器及父类加载器之间的关系如图

image-20210825190035816

图中的类加载器都没有指明具体的加载器实现,它只是一个体现了加载器之间关系的概念模型,并且只是体现了OSGi中最简单的加载器委派关系。

类加载时可能进行的查找规则如下:

  • 以java.*开头的类,委派给父类加载器加载。
  • 否则,委派列表名单内的类,委派给父类加载器加载。
  • 否则,Import列表中的类,委派给Export这个类的Bundle的类加载器加载。
  • 否则,查找当前Bundle的Classpath,使用自己的类加载器加载。
  • 否则,查找是否在自己的Fragment Bundle中,如果是则委派给Fragment Bundle的类加载器加载。
  • 否则,查找Dynamic Import列表的Bundle,委派给对应Bundle的类加载器加载。
  • 否则,类查找失败。

还可以看出,在OSGi中,加载器之间的关系不再是双亲委派模型的树形结构,而是已经进一步发展成一种更为复杂的、运行时才能确定的网状结构。这种网状的类加载器架构在带来更优秀的灵活性的同时,也可能会产生许多新的隐患。(循环依赖容易导致死锁)

10.1.3 字节码生成技术与动态代理的实现

JDK里面的Javac命令就是字节码生成技术的“老祖宗”,并且Javac也是一个由Java语言写成的程序,它的代码存放在OpenJDK的jdk.compiler\share\classes\com\sun\tools\javac目录中

要深入从Java源码到字节码编译过程,在Java世界里面除了Javac和字节码类库(ASM/CGLIB等)外,使用到字节码生成的例子比比皆是,如Web服务器中的JSP编译器,编译时织入的AOP框架,还有很常用的动态代理技术,甚至在使用反射的时候虚拟机都有可能会在运行时生成字节码来提高执行速度。我们选择其中相对简单的动态代理技术来讲解字节码生成技术是如何影响程序运作的。

许多Java开发人员都使用过动态代理,即使没有直接使用过java.lang.reflect.Proxy或实现过java.lang.reflect.InvocationHandler接口,应该也用过Spring来做过Bean的组织管理。如果使用过Spring,那大多数情况应该已经不知不觉地用到动态代理了,因为如果Bean是面向接口编程,那么在Spring内部都是通过动态代理的方式来对Bean进行增强的。动态代理中所说的“动态”,是针对使用Java代码实际编写了代理类的“静态”代理而言的,它的优势不在于省去了编写代理类那一点编码工作量,而是实现了可以在原始类和接口还未知的时候,就确定代理类的代理行为,当代理类与原始类脱离直接联系后,就可以很灵活地重用于不同的应用场景之中

下面代码演示了一个最简单的动态代理的用法,原始的代码逻辑是打印一句“hello world”,代理类的逻辑是在原始类方法执行前打印一句“welcome”。我们先看一下代码,然后再分析JDK是如何做到的

public class DynamicProxyTest {
    interface IHello {
        void sayHello();
    }

    static class Hello implements IHello {
        @Override
        public void sayHello() {
            System.out.println("hello world");
        }
    }

    static class DynamicProxy implements InvocationHandler {
        Object originalObj;

        Object bind(Object originalObj) {
            this.originalObj = originalObj;
            return Proxy.newProxyInstance(originalObj.getClass().getClassLoader(), originalObj.getClass().getInterfaces(), this);
        }

        @Override
        public Object invoke(Object proxy, Method method, Object[] args) throws Throwable {
            System.out.println("welcome");
            return method.invoke(originalObj, args);
        }
    }

    public static void main(String[] args) {
        IHello hello = (IHello) new DynamicProxy().bind(new Hello());
        hello.sayHello();
    }
}

输出:

welcome 
hello world

在上述代码里,唯一的“黑匣子”就是Proxy::newProxyInstance()方法,除此之外再没有任何特殊之处。这个方法返回一个实现了IHello的接口,并且代理了new Hello()实例行为的对象。跟踪这个方法的源码,可以看到程序进行过验证、优化、缓存、同步、生成字节码、显式类加载等操作,前面的步骤并不是我们关注的重点,这里只分析它最后调用sun.misc.ProxyGenerator::generateProxyClass()方法来完成生成字节码的动作,这个方法会在**运行时产生一个描述代理类的字节码byte[]数组。**如果想看一看这个在运行时产生的代理类中写了些什么,可以在main()方法中加入下面这句:

System.getProperties().put("sun.misc.ProxyGenerator.saveGeneratedFiles", "true");

加入这句代码后再次运行程序,磁盘中将会产生一个名为“$Proxy0.class”的代理类Class文件,反编译后可以看见如下代码:

package org.fenixsoft.bytecode;

import java.lang.reflect.InvocationHandler;
import java.lang.reflect.Method;
import java.lang.reflect.Proxy;
import java.lang.reflect.UndeclaredThrowableException;

public final class $Proxy0 extends Proxy implements DynamicProxyTest.IHello {
    private static Method m3;
    private static Method m1;
    private static Method m0;
    private static Method m2;

    public $Proxy0(InvocationHandler paramInvocationHandler) throws {
        super(paramInvocationHandler);
    }

    public final void sayHello() throws {
        try {
            this.h.invoke(this, m3, null);
            return;
        } catch (RuntimeException localRuntimeException) {
            throw localRuntimeException;
        } catch (Throwable localThrowable) {
            throw new UndeclaredThrowableException(localThrowable);
        }
    }
    // 此处由于版面原因,省略equals()、hashCode()、toString()3个方法的代码
    // 这3个方法的内容与sayHello()非常相似。 
    static { 
        try { 
            m3 = Class.forName("org.fenixsoft.bytecode.DynamicProxyTest$IHello").getMethod("sayHello", new Class[0]); 
            m1 = Class.forName("java.lang.Object").getMethod("equals", new Class[] { Class.forName("java.lang.Object") }); 
            m0 = Class.forName("java.lang.Object").getMethod("hashCode", new Class[0]); 
            m2 = Class.forName("java.lang.Object").getMethod("toString", new Class[0]); 
            return; 
        }catch (NoSuchMethodException localNoSuchMethodException) { 
            throw new NoSuchMethodError(localNoSuchMethodException.getMessage()); 
        }catch (ClassNotFoundException localClassNotFoundException) { 
            throw new NoClassDefFoundError(localClassNotFoundException.getMessage()); } 
    } 
}

这个代理类的实现代码也很简单,它为传入接口中的每一个方法,以及从java.lang.Object中继承来的equals()、hashCode()、toString()方法都生成了对应的实现,并且统一调用了InvocationHandler对象的invoke()方法(代码中的“this.h”就是父类Proxy中保存的InvocationHandler实例变量)来实现这些方法的内容,各个方法的区别不过是传入的参数和Method对象有所不同而已,所以无论调用动态代理的哪一个方法,实际上都是在执行InvocationHandler::invoke()中的代理逻辑。

这个例子中并没有讲到generateProxyClass()方法具体是如何产生代理类“$Proxy0.class”的字节码的,大致的生成过程其实就是根据Class文件的格式规范去拼装字节码,但是在实际开发中,以字节为单位直接拼装出字节码的应用场合很少见,这种生成方式也只能产生一些高度模板化的代码。对于用户的程序代码来说,如果有要大量操作字节码的需求,还是使用封装好的字节码类库比较合适。

10.1.4 Backport工具: Java的时光机器

把高版本JDK中编写的代码放到低版本JDK环境中去部署使用。为了解决这个问题,一种名为“Java逆向移植”的工具(Java Backporting Tools)应运而生,Retrotranslator和Retrolambda是这类工具中的杰出代表。

Retrotranslator的作用是将JDK 5编译出来的Class文件转变为可以在JDK 1.4或1.3上部署的版本, 它能很好地支持自动装箱、泛型、动态注解、枚举、变长参数、遍历循环、静态导入这些语法特性,甚至还可以支持JDK 5中新增的集合改进、并发包及对泛型、注解等的反射操作。Retrolambda的作用与Retrotranslator是类似的,目标是将JDK 8的Lambda表达式和try-resources语法转变为可以在JDK5、JDK 6、JDK 7中使用的形式,同时也对接口默认方法提供了有限度的支持。

JDK的每次升级新增的功能大致可以分为以下五类:

1)对Java类库API的代码增强。譬如JDK 1.2时代引入的java.util.Collections等一系列集合类,在JDK 5时代引入的java.util.concurrent并发包、在JDK 7时引入的java.lang.invoke包,等等。

2)在前端编译器层面做的改进。这种改进被称作语法糖,如自动装箱拆箱,实际上就是Javac编译器在程序中使用到包装对象的地方自动插入了很多Integer.valueOf()、Float.valueOf()之类的代码;变长参数在编译之后就被自动转化成了一个数组来完成参数传递;泛型的信息则在编译阶段就已经被擦除掉了(但是在元数据中还保留着),相应的地方被编译器自动插入了类型转换代码。

3)需要在字节码中进行支持的改动。如JDK 7里面新加入的语法特性——动态语言支持,就需要在虚拟机中新增一条invokedynamic字节码指令来实现相关的调用功能。不过字节码指令集一直处于相对稳定的状态,这种要在字节码层面直接进行的改动是比较少见的。

4)需要在JDK整体结构层面进行支持的改进,典型的如JDK 9时引入的Java模块化系统,它就涉及了JDK结构、Java语法、类加载和连接过程、Java虚拟机等多个层面。

5)集中在虚拟机内部的改进。如JDK 5中实现的JSR-133[4]规范重新定义的Java内存模型(Java Memory Model,JMM),以及在JDK 7、JDK 11、JDK 12中新增的G1、ZGC和Shenandoah收集器之类的改动,这种改动对于程序员编写代码基本是透明的,只会在程序运行时产生影响。

10.2 实战:自己动手实现远程执行功能

排查问题的过程中,想查看内存中的一些参数值,却苦于没有方法把这些值输出到界面或日志中。又或者定位到某个缓存数据有问题,由于缺少缓存的统一管理界面,不得不重启服务才能清理掉这个缓存。类似的需求有一个共同的特点,那就是只要在服务中执行一小段程序代码,就可以定位或排除问题,但就是偏偏找不到可以让服务器执行临时代码的途径,让人恨不得在服务器上装个后门。这是项目运维中的常见问题,通常解决类问题有以下几种途径:

1)可以使用BTrace这类JVMTI工具去动态修改程序中某一部分的运行代码,这部分在前面简要的介绍,类似的JVMTI工具还有阿里巴巴的Arthas等。

2)使用JDK 6之后提供了Compiler API,可以动态地编译Java程序,这样虽然达不到动态语言的灵活度,但让服务器执行临时代码的需求是可以得到解决的。

3)也可以通过“曲线救国”的方式来做到,譬如写一个JSP文件上传到服务器,然后在浏览器中运行它,或者在服务端程序中加入一个BeanShell Script、JavaScript等的执行引擎(如Mozilla Rhino)去执行动态脚本。

4)在应用程序中内置动态执行的功能。

我们将使用前面学到的关于类加载及虚拟机执行子系统的知识去完成在服务端执行临时代码的功能。

10.2.1 目标

首先,在实现“在服务端执行临时代码”这个需求之前,先来明确一下本次实战的具体目标,我们希望最终的产品是这样的:

  • 不依赖某个JDK版本才加入的特性(包括JVMTI),能在目前还被普遍使用的JDK中部署,只要是使用JDK 1.4以上的JDK都可以运行。
  • 不改变原有服务端程序的部署,不依赖任何第三方类库。
  • 不侵入原有程序,即无须改动原程序的任何代码。也不会对原有程序的运行带来任何影响。
  • 考虑到BeanShell Script或JavaScript等脚本与Java对象交互起来不太方便,“临时代码”应该直接支持Java语言。
  • “临时代码”应当具备足够的自由度,不需要依赖特定的类或实现特定的接口。这里写的是“不需要”而不是“不可以”,当“临时代码”需要引用其他类库时也没有限制,只要服务端程序能使用的类型和接口,临时代码都应当能直接引用。
  • “临时代码”的执行结果能返回到客户端,执行结果可以包括程序中输出的信息及抛出的异常等。

PART3:程序编译与代码优化

11 前端编译与优化

11.1 概述

在Java技术下谈“编译期”而没有具体上下文语境的话,其实是一句很含糊的表述,因为它可能是指一个前端编译器(叫“编译器的前端”更准确一些)把***.java文件转变成*.class文件**的过程;也可能是指Java虚拟机的即时编译器(常称JIT编译器,Just In Time Compiler)运行期把字节码转变成本地机器码的过程;还可能是指使用静态的提前编译器(常称AOT编译器,Ahead Of Time Compiler)直接把程序编译成与目标机器指令集相关的二进制代码的过程。

  • 前端编译器:JDK的Javac、Eclipse JDT中的增量式编译器(ECJ)。
  • 即时编译器:HotSpot虚拟机的C1、C2编译器,Graal编译器。
  • 提前编译器:JDK的Jaotc、GNU Compiler for the Java(GCJ)、Excelsior JET。

这3类过程中最符合普通程序员对Java程序编译认知的应该是第一类,Javac这类前端编译器对代码的运行效率几乎没有任何优化措施可言(在JDK 1.3之后,Javac的-O优化参数就不再有意义),哪怕是编译器真的采取了优化措施也不会产生什么实质的效果。因为Java虚拟机设计团队选择把对性能的优化全部集中到运行期的即时编译器中,这样可以让那些不是由Javac产生的Class文件(如JRuby、Groovy等语言的Class文件)也同样能享受到编译器优化措施所带来的性能红利。但是,如果把“优化”的定义放宽,把对开发阶段的优化也计算进来的话,Javac确实是做了许多针对Java语言编码过程的优化措施来降低程序员的编码复杂度、提高编码效率。相当多新生的Java语法特性,都是靠编译器的“语法糖”来实现,而不是依赖字节码或者Java虚拟机的底层改进来支持。我们可以这样认为,Java中即时编译器在运行期的优化过程,支撑了程序执行效率的不断提升;而前端编译器在编译期的优化过程,则是支撑着程序员的编码效率和语言使用者的幸福感的提高。

11.2 Javac编译器

Javac编译器不像HotSpot虚拟机那样使用C++语言(包含少量C语言)实现,它本身就是一个由Java语言编写的程序,这为纯Java的程序员了解它的编译过程带来了很大的便利。

11.2.1 Javac的源码与调试

从Javac代码的总体结构来看,编译过程大致可以分为1个准备过程和3个处理过程,它们分别如下所示。

1)准备过程:初始化插入式注解处理器。

2)解析与填充符号表过程,包括:

  • 词法、语法分析。将源代码的字符流转变为标记集合,构造出抽象语法树。
  • 填充符号表。产生符号地址和符号信息。

3)插入式注解处理器的注解处理过程:插入式注解处理器的执行阶段,本章的实战部分会设计一个插入式注解处理器来影响Javac的编译行为。

4)分析与字节码生成过程,包括:

  • 标注检查。对语法的静态信息进行检查。
  • 数据流及控制流分析。对程序动态运行过程进行检查。
  • 解语法糖。将简化代码编写的语法糖还原为原有的形式。
  • 字节码生成。将前面各个步骤所生成的信息转化成字节码。

上述3个处理过程里,执行插入式注解时又可能会产生新的符号,如果有新的符号产生,就必须转回到之前的解析、填充符号表的过程中重新处理这些新符号,从总体来看,三者之间的关系与交互顺序如图所示:

image-20210826075817621

我们可以把上述处理过程对应到代码中,Javac编译动作的入口是 com.sun.tools.javac.main.JavaCompiler类,上述3个过程的代码逻辑集中在这个类的compile()和compile2()方法里,其中主体代码如图所示,整个编译过程主要的处理由图中标注的8个方法来完成。

image-20210826080908433

源码如下:

public void compile(List<JavaFileObject> sourceFileObjects,
                    List<String> classnames,
                    Iterable<? extends Processor> processors)
{
    if (processors != null && processors.iterator().hasNext())
        explicitAnnotationProcessingRequested = true;
    // as a JavaCompiler can only be used once, throw an exception if
    // it has been used before.
    if (hasBeenUsed)
        throw new AssertionError("attempt to reuse JavaCompiler");
    hasBeenUsed = true;

    // forcibly set the equivalent of -Xlint:-options, so that no further
    // warnings about command line options are generated from this point on
    options.put(XLINT_CUSTOM.text + "-" + LintCategory.OPTIONS.option, "true");
    options.remove(XLINT_CUSTOM.text + LintCategory.OPTIONS.option);

    start_msec = now();

    try {
        initProcessAnnotations(processors);

        // These method calls must be chained to avoid memory leaks
        delegateCompiler =
            processAnnotations(
                enterTrees(stopIfError(CompileState.PARSE, parseFiles(sourceFileObjects))),
                classnames);

        delegateCompiler.compile2();
        delegateCompiler.close();
        elapsed_msec = delegateCompiler.elapsed_msec;
    } catch (Abort ex) {
        if (devVerbose)
            ex.printStackTrace(System.err);
    } finally {
        if (procEnvImpl != null)
            procEnvImpl.close();
    }
}
11.2.2 解析与填充符号表

解析过程由parseFiles()方法来完成,解析过程包括了经典程序编译原理中的词法分析语法分析两个步骤。

11.2.2.1 词法、语法分析

词法分析是将源代码的字符流转变为标记(Token)集合的过程,单个字符是程序编写时的最小元素,但标记才是编译时的最小元素。关键字、变量名、字面量、运算符都可以作为标记,如“int a=b+2”这句代码中就包含了6个标记,分别是int、a、=、b、+、2,虽然关键字int由3个字符构成,但 是它只是一个独立的标记,不可以再拆分。在Javac的源码中,词法分析过程由com.sun.tools.javac.parser.Scanner类来实现。

语法分析是根据标记序列构造抽象语法树的过程,抽象语法树(Abstract Syntax Tree,AST)是一 种用来描述程序代码语法结构的树形表示方式,抽象语法树的每一个节点都代表着程序代码中的一个语法结构(SyntaxConstruct),例如包、类型、修饰符、运算符、接口、返回值甚至连代码注释等都可以是一种特定的语法结构。

在Javac的源码中,语法分析过程由com.sun.tools.javac.parser.Parser类实现,这个阶段产出的抽象语法树是以com.sun.tools.javac.tree.JCTree类表示的。

经过词法和语法分析生成语法树以后,编译器就不会再对源码字符流进行操作了,后续的操作都建立在抽象语法树之上。

11.2.2.2 填充符号表

完成了语法分析和词法分析之后,下一个阶段是对符号表进行填充的过程,也就是之前代码中的enterTrees()方法。

符号表(Symbol Table)是由一组符号地址和符号信息构成的数据结构,读者可以把它类比想象成哈希表中键值对的存储形式(实际上符号表不一定是哈希表实现,可以是有序符号表、树状符号表、栈结构符号表等各种形式)。符号表中所登记的信息在编译的不同阶段都要被用到。譬如在语义分析的过程中,符号表所登记的内容将用于语义检查(如检查一个名字的使用和原先的声明是否一致)和产生中间代码,在目标代码生成阶段,当对符号名进行地址分配时,符号表是地址分配的直接依据。

在Javac源代码中,填充符号表的过程由com.sun.tools.javac.comp.Enter类实现,该过程的产出物是一个待处理列表,其中包含了每一个编译单元的抽象语法树的顶级节点

11.2.3 注解处理器

JDK 5之后,Java语言提供了对注解(Annotations)的支持,注解在设计上原本是与普通的Java代码一样,都只会在程序运行期间发挥作用的。但在JDK 6中又提出并通过了JSR-269提案,该提案设计了一组被称为“插入式注解处理器”的标准API,可以**提前至编译期对代码中的特定注解进行处理,从而影响到前端编译器的工作过程。**我们可以把插入式注解处理器看作是一组编译器的插件,当这些插件工作时,允许读取、修改、添加抽象语法树中的任意元素。如果这些插件在处理注解期间对语法树进行过修改,编译器将回到解析及填充符号表的过程重新处理,直到所有插入式注解处理器都没有再对语法树进行修改为止,每一次循环过程称为一个轮次(Round)

**有了编译器注解处理的标准API后,程序员的代码才有可能干涉编译器的行为,由于语法树中的任意元素,甚至包括代码注释都可以在插件中被访问到,所以通过插入式注解处理器实现的插件在功能上有很大的发挥空间。**只要有足够的创意,程序员能使用插入式注解处理器来实现许多原本只能在编码中由人工完成的事情。譬如Java著名的编码效率工具Lombok[2],它可以通过注解来实现自动产生getter/setter方法、进行空置检查、生成受查异常表、产生equals()和hashCode()方法。

在Javac源码中,插入式注解处理器的初始化过程是在initPorcessAnnotations()方法中完成的,而它的执行过程则是在processAnnotations()方法中完成。这个方法会判断是否还有新的注解处理器需要执行,如果有的话,通过com.sun.tools.javac.processing.JavacProcessingEnvironment类的doProcessing()方法来生成一个的JavaCompiler对象,对编译的后续步骤进行处理。

11.2.4 语义分析与字节码生成

经过语法分析之后,编译器获得了程序代码的抽象语法树表示,抽象语法树能够表示一个结构正确的源程序,但无法保证源程序的语义是符合逻辑的。而语义分析的主要任务则是对结构上正确的源程序进行上下文相关性质的检查,譬如进行类型检查、控制流检查、数据流检查,等等。

int a = 1; 
boolean b = false; 
char c = 2;

后续可能出现的赋值运算:

int d = a + c; 
int d = b + c; 
char d = a + c;

后续代码中如果出现了如上3种赋值运算的话,那它们都能构成结构正确的抽象语法树,但是只有第一种的写法在语义上是没有错误的,能够通过检查和编译。其余两种在Java语言中是不合逻辑的,无法编译

11.2.4.1 标注检查

Javac在编译过程中,语义分析过程可分为标注检查数据及控制流分析两个步骤,分别对应之前图中的attribute()和flow()方法

标注检查步骤要检查的内容包括诸如变量使用前是否已被声明、变量与赋值之间的数据类型是否能够匹配,等等,刚才3个变量定义的例子就属于标注检查的处理范畴。在标注检查中,还会顺便进行一个称为常量折叠(Constant Folding)的代码优化,这是Javac编译器会对源代码做的极少量优化措施之一(代码优化几乎都在即时编译器中进行)。如果我们在Java代码中写下如下所示的变量定义:

int a = 1 + 2;

则在抽象语法树上仍然能看到字面量“1”“2”和操作符“+”号,但是在经过常量折叠优化之后,它们将会被折叠为字面量“3”,如图所示,这个插入式表达式(Infix Expression)的值已经在语法树上标注出来了(ConstantExpressionValue:3)。由于编译期间进行了常量折叠,所以在代码里面定义“a=1+2”比起直接定义“a=3”来,并不会增加程序运行期哪怕仅仅一个处理器时钟周期的处理工作量。

标注检查步骤在Javac源码中的实现类是com.sun.tools.javac.comp.Attr类和com.sun.tools.javac.comp.Check类。

image-20210826095047581

11.2.4.2 数据及控制流分析

数据流分析和控制流分析是对程序上下文逻辑更进一步的验证,它可以检查出诸如程序局部变量在使用前是否有赋值、方法的每条路径是否都有返回值、是否所有的受查异常都被正确处理了等问题。编译时期的数据及控制流分析与类加载时的数据及控制流分析的目的基本上可以看作是一致的,但校验范围会有所区别,有一些校验项只有在编译期或运行期才能进行。

final语义校验:

// 方法一带有final修饰 
public void foo(final int arg) 
{ final int var = 0; 
// do something }

// 方法二没有final修饰 
public void foo(int arg) 
{ int var = 0; 
// do something }

在这两个foo()方法中,一个方法的参数和局部变量定义使用了final修饰符,另外一个则没有,在代码编写时程序肯定会受到final修饰符的影响,不能再改变arg和var变量的值,但是如果观察这两段代码编译出来的字节码,会发现它们是没有任何一点区别的,每条指令,甚至每个字节都一模一样。通过前面对Class文件结构的讲解我们已经知道,局部变量与类的字段(实例变量、类变量)的存储是有显著差别的,局部变量在常量池中并没有CONSTANT_Fieldref_info的符号引用,自然就不可能存储有访问标志(access_flags)的信息,甚至可能连变量名称都不一定会被保留下来(这取决于编译时的编译器的参数选项),自然在Class文件中就不可能知道一个局部变量是不是被声明为final了(class文件字节码转为运行时数据结构在运行期看不出是不是final所以只能由编译阶段处理)。因此,可以肯定地推断出把局部变量声明为final,对运行期是完全没有影响的,**变量的不变性仅仅由Javac编译器在编译期间来保障,这就是一个只能在编译期而不能在运行期中检查的例子。**在Javac的源码中,数据及控制流分析的入口是flow()方法,具体操作由com.sun.tools.javac.comp.Flow类来完成。

11.2.4.3 解语法糖

语法糖(Syntactic Sugar),也称糖衣语法,是由英国计算机科学家Peter J.Landin发明的一种编程术语,指的是在计算机语言中添加的某种语法,这种语法对语言的编译结果和功能并没有实际影响,但是却能更方便程序员使用该语言。通常来说使用语法糖能够减少代码量、增加程序的可读性,从而减少程序代码出错的机会。

Java在现代编程语言之中已经属于“低糖语言”(相对于C#及许多其他Java虚拟机语言来说),尤其是JDK 5之前的Java。“低糖”的语法让Java程序实现相同功能的代码量往往高于其他语言,通俗地说就是会显得比较“啰嗦”,这也是Java语言一直被质疑是否已经“落后”了的一个浮于表面的理由。

Java中最常见的语法糖包括了前面提到过的泛型(其他语言中泛型并不一定都是语法糖实现,如C#的泛型就是直接由CLR支持的)、变长参数、自动装箱拆箱,等等,Java虚拟机运行时并不直接支持这些语法,它们在编译阶段被还原回原始的基础语法结构,这个过程就称为解语法糖。

在Javac的源码中,解语法糖的过程由desugar()方法触发,在com.sun.tools.javac.comp.TransTypes类和com.sun.tools.javac.comp.Lower类中完成。

11.2.4.4 字节码生成

字节码生成是Javac编译过程的最后一个阶段,在Javac源码里面由com.sun.tools.javac.jvm.Gen类来完成。字节码生成阶段不仅仅是把前面各个步骤所生成的信息(语法树、符号表)转化成字节码指令写到磁盘中,编译器还进行了少量的代码添加和转换工作。

完成了对语法树的遍历和调整之后,就会把填充了所有所需信息的符号表交到com.sun.tools.javac.jvm.ClassWriter类手上,由这个类的writeClass()方法输出字节码,生成最终的Class 文件,到此,整个编译过程宣告结束。

11.3 Java语法糖的味道

几乎所有的编程语言都或多或少提供过一些语法糖来方便程序员的代码开发,这些语法糖虽然不会提供实质性的功能改进,但是它们或能提高效率,或能提升语法的严谨性,或能减少编码出错的机会。

11.3.1 泛型

泛型的本质是参数化类型(Parameterized Type)或者参数化多态(Parametric Polymorphism)的应用,即可以将操作的数据类型指定为方法签名中的一种特殊参数,这种参数类型能够用在类、接口和方法的创建中,分别构成泛型类、泛型接口和泛型方法。

11.3.1.1 Java与C#的泛型

Java选择的泛型实现方式叫作“类型擦除式泛型”(Type Erasure Generics),而C#选择的泛型实现方式是“具现化式泛型”(Reified Generics)。

C#里面泛型无论在程序源码里面、编译后的中间语言表示(Intermediate Language,这时候泛型是一个占位符)里面,抑或是运行期的CLR里面都是切实存在的,List与List就是两个不同的类型,它们由系统在运行期生成,有着自己独立的虚方法表和类型数据。而Java语言中的泛型则不同,它只在程序源码中存在,在编译后的字节码文件中,全部泛型都被替换为原来的裸类型,并且在相应的地方插入了强制转型代码,因此对于运行期的Java语言来说,ArrayList与ArrayList其实是同一个类型,由此可以想象“类型擦除”这个名字的含义和来源

Java中不支持的泛型用法:

public class TypeErasureGenerics<E> { 
public void doSomething(Object item) 
{ 
	if (item instanceof E) { 
	// 不合法,无法对泛型进行实例判断 
	... 
	}
	E newItem = new E(); 
	// 不合法,无法使用泛型创建对象 
	E[] itemArray = new E[10]; 
	// 不合法,无法使用泛型创建数组 
	} 
}

上面这些是Java泛型在编码阶段产生的不良影响,如果说这种使用层次上的差别还可以通过多写几行代码、方法中多加一两个类型参数来解决的话,性能上的差距则是难以用编码弥补的。C#2.0引入了泛型之后,带来的显著优势之一便是对比起Java在执行性能上的提高,因为在使用平台提供的容器类型(如List,Dictionary<TKey,TValue>)时,无须像Java里那样不厌其烦地拆箱和装箱,如果在Java中要避免这种损失,就必须构造一个与数据类型相关的容器类(譬如IntFloatHashMap这样的容器)。显然,这除了引入更多代码造成复杂度提高、复用性降低之外,更是丧失了泛型本身的存在价值。

Java的类型擦除式泛型无论在使用效果上还是运行效率上,几乎是全面落后于C#的具现化式泛型,而它的唯一优势是在于实现这种泛型的影响范围上:擦除式泛型的实现几乎只需要在Javac编译器上做出改进即可,不需要改动字节码、不需要改动Java虚拟机,也保证了以前没有使用泛型的库可以直接运行在Java 5.0之上。

11.3.1.2 泛型背景

为了保证Class文件可以在Java 5.0引入泛型之后继续运行,设计者面前大体上有两条路可以选择:

  • 需要泛型化的类型(主要是容器类型),以前有的就保持不变,然后平行地加一套泛型化版本的新类型。
  • 直接把已有的类型泛型化,即让所有需要泛型化的已有类型都原地泛型化,不添加任何平行于已有类型的泛型版。

在这个分叉路口,C#走了第一条路,添加了一组System.Collections.Generic的新容器,以前的System.Collections以及System.Collections.Specialized容器类型继续存在。C#的开发人员很快就接受了新的容器,倒也没出现过什么不适应的问题,唯一的不适大概是许多.NET自身的标准库已经把老容器类型当作方法的返回值或者参数使用,这些方法至今还保持着原来的老样子。

在JDK 1.2时,遗留代码规模尚小,Java就引入过新的集合类,并且保留了旧集合类不动。这导致了直到现在标准类库中还有Vector(老)和ArrayList(新)、有Hashtable(老)和HashMap(新)等两套容器代码并存,如果当时再摆弄出像Vector(老)、ArrayList(新)、Vector(老但有泛型)、ArrayList(新且有泛型)这样的容器集合,随着遗留代码规模增大,Java只能选择第二条路了。

11.3.1.3 类型擦除

我们继续以ArrayList为例来介绍Java泛型的类型擦除具体是如何实现的。由于Java选择了第二条路,直接把已有的类型泛型化。要让所有需要泛型化的已有类型,譬如ArrayList,原地泛型化后变成了ArrayList,而且保证以前直接用ArrayList的代码在泛型新版本里必须还能继续用这同一个容器,这就必须让所有泛型化的实例类型,譬如ArrayList、ArrayList这些全部自动成为ArrayList的子类型才能可以,否则类型转换就是不安全的。由此就引出了“裸类型”(Raw Type)的概念,裸类型应被视为所有该类型泛型化实例的共同父类型(Super Type)

裸类型赋值代码如下:

ArrayList<Integer> ilist = new ArrayList<Integer>(); ArrayList<String> slist = new ArrayList<String>(); ArrayList list; 
// 裸类型 
list = ilist; 
list = slist;

接下来的问题是该如何实现裸类型。这里又有了两种选择:

一种是在运行期由Java虚拟机来自动地、真实地构造出ArrayList这样的类型,并且自动实现从ArrayList派生自ArrayList的继承关系来满足裸类型的定义;

另外一种是索性简单粗暴地直接在编译时把ArrayList还原回ArrayList,只在元素访问、修改时自动插入一些强制类型转换和检查指令。(Java选择的这种,编译时就替换为裸类型)

泛型擦除前:

public static void main(String[] args) { 
Map<String, String> map = new HashMap<String, String>(); map.put("hello", "你好"); 
map.put("how are you?", "吃了没?"); System.out.println(map.get("hello")); System.out.println(map.get("how are you?")); 
}

把这段Java代码编译成Class文件,然后再用字节码反编译工具进行反编译后,将会发现泛型都不见了,程序又变回了Java泛型出现之前的写法,泛型类型都变回了裸类型,只在元素访问时插入了从Object到String的强制转型代码:

泛型擦除后的例子

public static void main(String[] args) { 
Map map = new HashMap(); 
map.put("hello", "你好"); 
map.put("how are you?", "吃了没?"); System.out.println((String) map.get("hello")); System.out.println((String) map.get("how are you?")); 
}

首先,使用擦除法实现泛型直接导致了对原始类型(Primitive Types)数据的支持又成了新的麻烦

原始类型的泛型(目前的Java不支持) :

ArrayList<int> ilist = new ArrayList<int>(); ArrayList<long> llist = new ArrayList<long>(); 
ArrayList list; 
list = ilist; 
list = llist;

这种情况下,一旦把泛型信息擦除后,到要插入强制转型代码的地方就没办法往下做了,因为不支持int、long与Object之间的强制转型。当时Java给出的解决方案一如既往的简单粗暴:既然没法转换那就索性别支持原生类型的泛型了吧,你们都用ArrayList、ArrayList,反正都做了自动的强制类型转换,遇到原生类型时把装箱、拆箱也自动做了得了。这个决定后面导致了无数构造包装类和装箱、拆箱的开销,成为Java泛型慢的重要原因

第二,运行期无法取到泛型类型信息,会让一些代码变得相当啰嗦

像下面这段代码这样,我们去写一个泛型版本的从List到数组的转换方法,由于不能从List中取得参数化类型T,所以不得不从一个额外参数中再传入一个数组的组件类型进去

public static <T> T[] convert(List<T> list, 
							  Class<T> componentType) { 
	T[] array = (T[])Array.newInstance
	(
	componentType, 
	list.size()
	);
... }

最后,通过擦除法来实现泛型,还丧失了一些面向对象思想应有的优雅,带来了一些模棱两可的模糊状况

当泛型遇见重载1 :

public class GenericTypes { 
	public static void method(List<String> list) { System.out.println("invoke method(List<String> list)");
    }
    public static void method(List<Integer> list) { System.out.println("invoke method(List<Integer> list)"); 	} 
}

请读者思考一下,上面这段代码是否正确,能否编译执行?也许你已经有了答案,这段代码是不能被编译的,因为参数List和List编译之后都被擦除了,变成了同一种的裸类型List,类型擦除导致这两个方法的特征签名变得一模一样。初步看来,无法重载的原因已经找到了,但是真的就是如此吗?其实这个例子中泛型擦除成相同的裸类型只是无法重载的其中一部分原因,请再接着看一看下面代码的内容。

当泛型遇见重载2 :

public class GenericTypes { 
public static String method(List<String> list) { 			System.out.println("invoke method(List<String> list)"); return ""; }

public static int method(List<Integer> list) { 				System.out.println("invoke method(List<Integer> list)"); return 1; }

public static void main(String[] args) {
	method(new ArrayList<String>()); 
	method(new ArrayList<Integer>()); 
	} 
}

执行结果:

invoke method(List<String> list) 
invoke method(List<Integer> list)

两个method()方法添加了不同的返回值,由于这两个返回值的加入,方法重载居然成功了,即这段代码可以被编译和执行了。这是我们对Java语言中返回值不参与重载选择的基本认知的挑战吗?

重载当然不是根据返回值来确定的,之所以这次能编译和执行成功,是因为两个method()方法加入了不同的返回值后才能共存在一个Class文件之中。前面第7章介绍Class文件方法表(method_info)的数据结构时曾经提到过,方法重载要求方法具备不同的特征签名,返回值并不包含在方法的特征签名中,所以返回值不参与重载选择,但是在Class文件格式之中,只要描述符不是完全一致的两个方法就可以共存。也就是说两个方法如果有相同的名称和特征签名,但返回值不同,那它们也是可以合法地共存于一个Class文件中的。

由于Java泛型的引入,各种场景(虚拟机解析、反射等)下的方法调用都可能对原有的基础产生影响并带来新的需求,如在泛型类中如何获取传入的参数化类型等。所以JCP组织对《Java虚拟机规范》做出了相应的修改,引入了诸如Signature、LocalVariableTypeTable等新的属性用于解决伴随泛型而来的参数类型的识别问题,Signature是其中最重要的一项属性,它的作用就是存储一个方法在字节码层面的特征签名这个属性中保存的参数类型并不是原生类型,而是包括了参数化类型的信息。修改后的虚拟机规范要求所有能识别49.0以上版本的Class文件的虚拟机都要能正确地识别Signature参数。

从Signature属性的出现我们还可以得出结论,擦除法所谓的擦除,仅仅是对方法的Code属性中的字节码进行擦除(编译出来的class文件字节码中的具体类型进行擦除),实际上元数据中还是保留了泛型信息,这也是我们在编码时能通过反射手段取得参数化类型的根本依据。

11.3.1.4 值类型与未来的泛型

值类型可以与引用类型一样,具有构造函数、方法或是属性字段,等等,而它与引用类型的区别在于它在赋值的时候通常是整体复制,而不是像引用类型那样传递引用的。更为关键的是,值类型的实例很容易实现分配在方法的调用栈上的,这意味着值类型会随着当前方法的退出而自动释放,不会给垃圾收集子系统带来任何压力。

11.3.2 自动装箱、拆箱与遍历循环

自动装箱、拆箱与遍历循环:

public static void main(String[] args) { 
	List<Integer> list = Arrays.asList(1, 2, 3, 4); 
	int sum = 0; 
	for (int i : list) 
		{ sum += i; }
	System.out.println(sum); 
}

自动装箱、拆箱与遍历循环编译之后 :

public static void main(String[] args) { 
	List list = Arrays.asList( new Integer[] { 					Integer.valueOf(1), Integer.valueOf(2), 				Integer.valueOf(3), Integer.valueOf(4) }); 
	int sum = 0; 
	for (Iterator localIterator = list.iterator(); localIterator.hasNext(); ) { 
	int i = ((Integer)localIterator.next()).intValue(); 
	sum += i; }
	System.out.println(sum); 
	}

自动装箱的陷阱:

public static void main(String[] args) { 
Integer a = 1; Integer b = 2; Integer c = 3;
Integer d = 3; Integer e = 321; Integer f = 321; 
Long g = 3L; 
System.out.println(c == d); 
System.out.println(e == f); 
System.out.println(c == (a + b)); System.out.println(c.equals(a + b)); 
System.out.println(g == (a + b)); System.out.println(g.equals(a + b)); 
}

输出:

true
false
true
true
true
false

包装类的“==”运算在不遇到算术运算的情况下不会自动拆箱,以及它们equals()方法不处理数据转型的关系。

11.3.3 条件编译

许多程序设计语言都提供了条件编译的途径,如C、C++中使用预处理器指示符(#ifdef)来完成条件编译。C、C++的预处理器最初的任务是解决编译时的代码依赖关系(如极为常用的#include预处理命令),而在Java语言之中并没有使用预处理器,因为Java语言天然的编译方式(编译器并非一个个地编译Java文件,而是将所有编译单元的语法树顶级节点输入到待处理列表后再进行编译,因此各个文件之间能够互相提供符号信息)就无须使用到预处理器。

Java语言当然也可以进行条件编译,方法就是使用条件为常量的if语句。如下面代码,该代码中的if语句不同于其他Java代码,它在编译阶段就会被“运行”,生成的字节码之中只包括“System.out.println(“block 1”);”一条语句,并不会包含if语句及另外一个分子中 的“System.out.println(“block 2”);”

public static void main(String[] args) { 
if (true) 
{ 
	System.out.println("block 1"); 
} else { 
	System.out.println("block 2"); 
	} 
}

该代码编译后Class文件的反编译结果:

public static void main(String[] args) { System.out.println("block 1"); }

只能使用条件为常量if语句才能达到上述效果,如果使用常量与其他带有条件判断能力的语句搭配,则可能在控制流分析中提示错误,被拒绝编译

public static void main(String[] args) { 
// 编译器将会提示“Unreachable code” 
while (false) { System.out.println(""); } }

Java语言中条件编译的实现,也是Java语言的一颗语法糖,根据布尔常量值的真假,编译器将会把分支中不成立的代码块消除掉,这一工作将在编译器解除语法糖阶段(com.sun.tools.javac.comp.Lower类中)完成。由于这种条件编译的实现方式使用了if语句,所以它必须遵循最基本的Java语法,只能写在方法体内部,因此它只能实现语句基本块(Block)级别的条件编译,而没有办法实现根据条件调整整个Java类的结构。

11.4 实战:插入式注解处理器

12 后端编译与优化

如果我们把字节码看作是程序语言的一种中间表示形式(Intermediate Representation,IR)的话,那编译器无论在何时、在何种状态下把Class文件转换成与本地基础设施(硬件指令集、操作系统)相关的二进制机器码,它都可以视为整个编译过程的后端。

虽然提前编译(Ahead Of Time,AOT)早已有所应用,但相对而言,即时编译(Just In Time,JIT)才是占绝对主流的编译形式。

12.1 即时编译器

目前主流的两款商用Java虚拟机(HotSpot、OpenJ9)里,Java程序最初都是通过解释器(Interpreter)进行解释执行的,当虚拟机发现某个方法或代码块的运行特别频繁,就会把这些代码认定为“热点代码”(Hot Spot Code),为了提高热点代码的执行效率,在运行时,虚拟机将会把这些代码编译成本地机器码,并以各种手段尽可能地进行代码优化,运行时完成这个任务的后端编译器被称为即时编译器。

12.1.1 解释器与编译器

尽管并不是所有的Java虚拟机都采用解释器与编译器并存的运行架构,但目前主流的商用Java虚拟机,譬如HotSpot、OpenJ9等,内部都同时包含解释器与编译器,解释器与编译器两者各有优势:当程序需要迅速启动和执行的时候,解释器可以首先发挥作用,省去编译的时间,立即运行。当程序启动后,随着时间的推移,编译器逐渐发挥作用,把越来越多的代码编译成本地代码,这样可以减少解释器的中间损耗,获得更高的执行效率。当程序运行环境中内存资源限制较大,可以使用解释执行节约内存(如部分嵌入式系统中和大部分的JavaCard应用中就只有解释器的存在),反之可以使用编译执行来提升效率。同时,解释器还可以作为编译器激进优化时后备的“逃生门”(如果情况允许,HotSpot虚拟机中也会采用不进行激进优化的客户端编译器充当“逃生门”的角色),让编译器根据概率选择一些不能保证所有情况都正确,但大多数时候都能提升运行速度的优化手段,当激进优化的假设不成立,如加载了新类以后,类型继承结构出现变化、出现“罕见陷阱”(Uncommon Trap)时可以通过逆优化(Deoptimization)退回到解释状态继续执行,因此在整个Java虚拟机执行架构里,解释器与编译器经常是相辅相成地配合工作,其交互关系如图:

image-20210826152810546

HotSpot虚拟机中内置了两个(或三个)即时编译器,其中有两个编译器存在已久,分别被称为“客户端编译器”(Client Compiler)和“服务端编译器”(Server Compiler),或者简称为C1编译器和C2编译器

在分层编译(Tiered Compilation)的工作模式出现以前,HotSpot虚拟机通常是采用解释器与其中一个编译器直接搭配的方式工作,程序使用哪个编译器,只取决于虚拟机运行的模式,HotSpot虚拟机会根据自身版本与宿主机器的硬件性能自动选择运行模式,用户也可以使用“-client”或“-server”参数去强制指定虚拟机运行在客户端模式还是服务端模式。

无论采用的编译器是客户端编译器还是服务端编译器,解释器与编译器搭配使用的方式在虚拟机中被称为“混合模式”(Mixed Mode),用户也可以使用参数“-Xint”强制虚拟机运行于“解释模式”(Interpreted Mode),这时候编译器完全不介入工作,全部代码都使用解释方式执行。另外,也可以使用参数“-Xcomp”强制虚拟机运行于“编译模式”(Compiled Mode),这时候将优先采用编译方式执行程序,但是解释器仍然要在编译无法进行的情况下介入执行过程。可以通过虚拟机的“-version”命令的输出结果显示出这三种模式

image-20210826154533249

由于即时编译器编译本地代码需要占用程序运行时间,通常要编译出优化程度越高的代码,所花费的时间便会越长;而且想要编译出优化程度更高的代码,解释器可能还要替编译器收集性能监控信息,这对解释执行阶段的速度也有所影响。为了在程序启动响应速度与运行效率之间达到最佳平衡,HotSpot虚拟机在编译子系统中加入了分层编译的功能

分层编译根据编译器编译、优化的规模与耗时,划分出不同的编译层次,其中包括:

  • 第0层。程序纯解释执行,并且解释器不开启性能监控功能(Profiling)。
  • 第1层。使用客户端编译器将字节码编译为本地代码来运行,进行简单可靠的稳定优化,不开启性能监控功能。
  • 第2层。仍然使用客户端编译器执行,仅开启方法及回边次数统计等有限的性能监控功能。
  • 第3层。仍然使用客户端编译器执行,开启全部性能监控,除了第2层的统计信息外,还会收集如分支跳转、虚方法调用版本等全部的统计信息。
  • 第4层。使用服务端编译器将字节码编译为本地代码,相比起客户端编译器,服务端编译器会启用更多编译耗时更长的优化,还会根据性能监控信息进行一些不可靠的激进优化。

以上层次并不是固定不变的,根据不同的运行参数和版本,虚拟机可以调整分层的数量。

image-20210827090501738

实施分层编译后,解释器、客户端编译器和服务端编译器就会同时工作热点代码都可能会被多次编译,用客户端编译器获取更高的编译速度,用服务端编译器来获取更好的编译质量,在解释执行的时候也无须额外承担收集性能监控信息的任务,而在服务端编译器采用高复杂度的优化算法时,客户端编译器可先采用简单优化来为它争取更多的编译时间。

12.1.2 编译对象与触发条件

在运行过程中会被即时编译器编译的目标是“热点代码”,这里所指的热点代码主要有两类,包括:

  • 被多次调用的方法。
  • 被多次执行的循环体。

对于这两种情况,编译的目标对象都是整个方法体,而不会是单独的循环体。第一种情况,由于是依靠方法调用触发的编译,那编译器理所当然地会以整个方法作为编译对象,这种编译也是虚拟机中标准的即时编译方式。而对于后一种情况,尽管编译动作是由循环体所触发的,热点只是方法的一部分,但编译器依然必须以整个方法作为编译对象,只是执行入口(从方法第几条字节码指令开始执行)会稍有不同,编译时会传入执行入口点字节码序号(Byte Code Index,BCI)。这种编译方式因为编译发生在方法执行的过程中,因此被很形象地称为“栈上替换”(On Stack Replacement,OSR),即方法的栈帧还在栈上,方法就被替换了。

在上面的描述里,无论是“多次执行的方法”,还是“多次执行的代码块”,所谓“多次”只定性不定量,并不是一个具体严谨的用语,那到底多少次才算“多次”呢?还有一个问题,就是Java虚拟机是如何统计某个方法或某段代码被执行过多少次的呢?解决了这两个问题,也就解答了即时编译被触发的条件。

要知道某段代码是不是热点代码,是不是需要触发即时编译,这个行为称为“热点探测”(HotSpot Code Detection),其实进行热点探测并不一定要知道方法具体被调用了多少次,目前主流的热点探测判定方式有两种,分别是:

  • 基于采样的热点探测(Sample Based HotSpot Code Detection)。采用这种方法的虚拟机会周期性地检查各个线程的调用栈顶,如果发现某个(或某些)方法经常出现在栈顶,那这个方法就是“热点方法”。基于采样的热点探测的好处是实现简单高效,还可以很容易地获取方法调用关系(将调用堆栈展开即可),缺点是很难精确地确认一个方法的热度,容易因为受到线程阻塞或别的外界因素的影响而扰乱热点探测。
  • 基于计数器的热点探测(Counter Based HotSpot Code Detection)。采用这种方法的虚拟机会为每个方法(甚至是代码块)建立计数器,统计方法的执行次数,如果**执行次数超过一定的阈值就认为它是“热点方法”。**这种统计方法实现起来要麻烦一些,需要为每个方法建立并维护计数器,而且不能直接获取到方法的调用关系。但是它的统计结果相对来说更加精确严谨。

在HotSpot虚拟机中使用的是第二种基于计数器的热点探测方法,为了实现热点计数,HotSpot为每个方法准备了两类计数器:方法调用计数器(Invocation Counter)和回边计数器(Back Edge Counter,“回边”的意思就是指在循环边界往回跳转)。当虚拟机运行参数确定的前提下,这两个计数器都有一个明确的阈值,计数器阈值一旦溢出,就会触发即时编译。

方法调用计数器。顾名思义,这个计数器就是用于统计方法被调用的次数,它的默认阈值在客户端模式下是1500次,在服务端模式下是10000次,这个阈值可以通过虚拟机参数**-XX:CompileThreshold来人为设定。当一个方法被调用时,虚拟机会先检查该方法是否存在被即时编译过的版本,如果存在,则优先使用编译后的本地代码来执行。如果不存在已被编译过的版本,则将该方法的调用计数器值加一,然后判断方法调用计数器与回边计数器值之和是否超过方法调用计数器的阈值**。一旦已超过阈值的话,将会向即时编译器提交一个该方法的代码编译请求。

如果没有做过任何设置,执行引擎默认不会同步等待编译请求完成,而是继续进入解释器按照解释方式执行字节码,**直到提交的请求被即时编译器编译完成。**当编译工作完成后,这个方法的调用入口地址就会被系统自动改写成新值,下一次调用该方法时就会使用已编译的版本了,整个即时编译的交互过程如图

image-20210827093816088

在默认设置下,方法调用计数器统计的并不是方法被调用的绝对次数,而是一个相对的执行频率,即一段时间之内方法被调用的次数。当超过一定的时间限度,如果方法的调用次数仍然不足以让它提交给即时编译器编译,那该方法的调用计数器就会被减少一半,这个过程被称为方法调用计数器热度的衰减(Counter Decay),而这段时间就称为此方法统计的半衰周期(Counter Half Life Time),进行热度衰减的动作是在虚拟机进行垃圾收集时顺便进行的,可以使用虚拟机参数-XX:-UseCounterDecay来关闭热度衰减,让方法计数器统计方法调用的绝对次数,这样只要系统运行时间足够长,程序中绝大部分方法都会被编译成本地代码。另外还可以使用-XX:CounterHalfLifeTime参数设置半衰周期的时间,单位是秒。

现在我们再来看看另外一个计数器——回边计数器,它的作用是统计一个方法中循环体代码执行的次数,在字节码中遇到控制流向后跳转的指令就称为“回边(Back Edge)”,很显然建立回边计数器统计的目的是为了触发栈上的替换编译。

关于回边计数器的阈值,虽然HotSpot虚拟机也提供了一个类似于方法调用计数器阈值-XX:CompileThreshold的参数-XX:BackEdgeThreshold供用户设置,但是当前的HotSpot虚拟机实际上并未使用此参数,我们必须设置另外一个参数-XX:OnStackReplacePercentage来间接调整回边计数器的阈值,其计算公式有如下两种。

  • 虚拟机运行在客户端模式下,回边计数器阈值计算公式为:方法调用计数器阈值(-XX:CompileThreshold)乘以OSR比率(-XX:OnStackReplacePercentage)除以100。其中-XX:OnStackReplacePercentage默认值为933,如果都取默认值,那客户端模式虚拟机的回边计数器的阈值为13995。
  • 虚拟机运行在服务端模式下,回边计数器阈值的计算公式为:方法调用计数器阈值(-XX:CompileThreshold)乘以(OSR比率(-XX:OnStackReplacePercentage)减去解释器监控比率(-XX: InterpreterProfilePercentage)的差值)除以100。其中-XX:OnStack ReplacePercentage默认值为140,-XX:InterpreterProfilePercentage默认值为33,如果都取默认值,那服务端模式虚拟机回边计数器的阈值为10700。

当解释器遇到一条回边指令时,会先查找将要执行的代码片段是否有已经编译好的版本,如果有的话,它将会优先执行已编译的代码,否则就把回边计数器的值加一,然后判断方法调用计数器回边计数器之和是否超过回边计数器的阈值当超过阈值的时候,将会提交一个栈上替换编译请求,并且把回边计数器的值稍微降低一些,以便继续在解释器中执行循环,等待编译器输出编译结果,整个执行过程如图:

image-20210827094643435

与方法计数器不同,回边计数器没有计数热度衰减的过程,因此这个计数器统计的就是该方法循环执行的绝对次数当回边计数器溢出的时候,它还会把方法计数器的值也调整到溢出状态,这样下次再进入该方法的时候就会执行标准编译过程(即超过方法计数器时的流程 两个计数器溢出其实都是采用的这个流程 而不是一边一个编译过程)。

上面两个图都仅仅是描述了客户端模式虚拟机的即时编译方式,对于服务端模式虚拟机来说,执行情况会比上面描述还要复杂一些。

(除这两种方式外,还有其他热点代码的探测方式,如基于“踪迹”(Trace)的热点探测在最近相当流行,像FireFox里的TraceMonkey和Dalvik里新的即时编译器都是用了这种热点探测方式。)

回边的次数不是循环次数,因为并非所有的循环都是回边,如空循环实际上就可以视为自己跳转到自己的过程,因此并不算作控制流向后跳转,也不会被回边计数器统计。

12.1.3 编译过程

在默认条件下,无论是方法调用产生的标准编译请求,还是栈上替换编译请求,虚拟机在编译器还未完成编译之前,都仍然将按照解释方式继续执行代码,而编译动作则在后台的编译线程中进行。用户可以通过参数-XX:-BackgroundCompilation来禁止后台编译,后台编译被禁止后,当达到触发即时编译的条件时,执行线程向虚拟机提交编译请求以后将会一直阻塞等待,直到编译过程完成再开始执行编译器输出的本地代码。

服务端编译器和客户端编译器的编译过程是有所差别的。对于客户端编译器来说,它是一个相对简单快速的三段式编译器,主要的关注点在于局部性的优化,而放弃了许多耗时较长的全局优化手段。

  • 在第一个阶段,一个平台独立前端字节码构造成一种高级中间代码表示(High-Level Intermediate Representation,HIR,即与目标机器指令集无关的中间表示)。HIR使用静态单分配(Static Single Assignment,SSA)的形式来代表代码值,这可以使得一些在HIR的构造过程之中和之后进行的优化动作更容易实现。在此之前编译器已经会在字节码上完成一部分基础优化,如方法内联、常量传播等优化将会在字节码被构造成HIR之前完成。
  • 在第二个阶段,一个平台相关后端从HIR中产生低级中间代码表示(Low-Level Intermediate Representation,LIR,即与目标机器指令集相关的中间表示),而在此之前会在HIR上完成另外一些优化,如空值检查消除、范围检查消除等,以便让HIR达到更高效的代码表示形式。
  • 最后的阶段是在平台相关后端使用线性扫描算法(Linear Scan Register Allocation)在LIR上分配寄存器,并在LIR上做窥孔(Peephole)优化,然后产生机器代码。

客户端编译器大致的执行过程如图

image-20210827102555919

而服务端编译器则是专门面向服务端的典型应用场景,并为服务端的性能配置针对性调整过的编译器,也是一个能容忍很高优化复杂度的高级编译器,几乎能达到GNU C++编译器使用-O2参数时的优化强度。它会执行大部分经典的优化动作,如:无用代码消除(Dead Code Elimination)、循环展开(Loop Unrolling)、循环表达式外提(Loop Expression Hoisting)、消除公共子表达式(Common Subexpression Elimination)、常量传播(Constant Propagation)、基本块重排序(Basic Block Reordering)等,还会实施一些与Java语言特性密切相关的优化技术,如范围检查消除(Range Check Elimination)、空值检查消除(Null Check Elimination,不过并非所有的空值检查消除都是依赖编译器优化的,有一些是代码运行过程中自动优化了)等。另外,还可能根据解释器或客户端编译器提供的性能监控信息,进行一些不稳定的预测性激进优化,如守护内联(Guarded Inlining)、分支频率预测(Branch Frequency Prediction)等

服务端编译采用的寄存器分配器是一个全局图着色分配器,它可以充分利用某些处理器架构(如RISC)上的大寄存器集合。以即时编译的标准来看,服务端编译器无疑是比较缓慢的,但它的编译速度依然远远超过传统的静态优化编译器,而且它相对于客户端编译器编译输出的代码质量有很大提高,可以大幅减少本地代码的执行时间,从而抵消掉额外的编译时间开销,所以也有很多非服务端的应用选择使用服务端模式的HotSpot虚拟机来运行。

12.1.4 实战:查看分析即时编译结果

12.2 提前编译器

12.2.1 提前编译的优劣得失

提前编译有两条明显分支:

一条分支是做与传统C、C++编译器类似的,在程序运行之前把程序代码编译成机器码的静态翻译工作;另外一条分支是把原本即时编译器在运行时要做的编译工作提前做好并保存下来,下次运行到这些代码(譬如公共库代码在被同一台机器其他Java进程使用)时直接把它加载进来使用。

第一条,这是传统的提前编译应用形式,它在Java中存在的价值直指即时编译的最大弱点:即时编译要占用程序运行时间和运算资源。即使现在先进的即时编译器已经足够快,以至于能够容忍相当高的优化复杂度了(譬如Azul公司基于LLVM的Falcon JIT,就能够以相当于Clang-O3的优化级别进行即时编译;又譬如OpenJ9的即时编译器Testarossa,它的静态版本同时也作为C、C++语言的提前编译器使用,优化的复杂度自然也支持得非常高);即使现在先进的即时编译器架构有了分层编译的支持,可以先用快速但低质量的即时编译器(客户端编译器)为高质量的即时编译器(服务端编译器)争取出更多编译时间,但是,无论如何,即时编译消耗的时间都是原本可用于程序运行的时间,消耗的运算资源都是原本可用于程序运行的资源,这个约束从未减弱,更不会消失。

提前编译的第二条路径,本质是给即时编译器做缓存加速,去改善Java程序的启动时间,以及需要一段时间预热后才能到达最高性能的问题。这种提前编译被称为动态提前编译(Dynamic AOT)或者索性就大大方方地直接叫即时编译缓存(JIT Caching)。在目前的Java技术体系里,这条路径的提前编译已经完全被主流的商用JDK支持。

即时编译器相对于提前编译器的天然优势:

  • 性能分析制导优化
  • 激进预测性优化
  • 链接时优化

12.3 编译器优化技术

OpenJDK的官方Wiki上,HotSpot虚拟机设计团队列出了一个相对比较全面的、即时编译器中采用的优化技术列表。

image-20210827113614966

image-20210827113628419

优化前的原始代码:

static class B { 
int value; 
final int get() { return value; } 
}
public void foo() { 
y = b.get(); 
// ...do stuff... 
z = b.get(); 
sum = y + z; 
}

首先,第一个要进行的优化是方法内联,它的主要目的有两个:一是去除方法调用的成本(如查找方法版本、建立栈帧等);二是为其他优化建立良好的基础。方法内联膨胀之后可以便于在更大范围上进行后续的优化手段,可以获取更好的优化效果。因此各种编译器一般都会把内联优化放在优化序列最靠前的位置。内联后的代码如下:

public void foo() { 
y = b.value; 
// ...do stuff... 
z = b.value; 
sum = y + z; }

第二步进行冗余访问消除(Redundant Loads Elimination),假设代码中间注释掉的“…do stuff…”所代表的操作不会改变b.value的值,那么就可以把“z=b.value”替换为“z=y”,因为上一句“y=b.value”已经保证了变量y与b.value是一致的,这样就可以不再去访问对象b的局部变量了。如果把b.value看作一个表达式,那么也可以把这项优化看作一种公共子表达式消除(Common Subexpression Elimination),优化后的代码如下:

public void foo() { 
y = b.value; 
// ...do stuff... 
z = y; 
sum = y + z; 
}

第三步进行复写传播(Copy Propagation),因为这段程序的逻辑之中没有必要使用一个额外的变量z,它与变量y是完全相等的,因此我们可以使用y来代替z。复写传播之后的程序如下:

public void foo() { 
y = b.value; 
// ...do stuff... 
y = y; 
sum = y + y; }

第四步进行无用代码消除(Dead Code Elimination),无用代码可能是永远不会被执行的代码,也可能是完全没有意义的代码。因此它又被很形象地称为“Dead Code”,在代码清单11-9中,“y=y”是没有意义的,把它消除后的程序如下:

public void foo() { 
y = b.value; 
// ...do stuff... 
sum = y + y; }

挑选了四项有代表性的优化技术,观察它们是如何运作的。它们分别是:

  • 最重要的优化技术之一:方法内联。
  • 最前沿的优化技术之一:逃逸分析。
  • 语言无关的经典优化技术之一:公共子表达式消除。
  • 语言相关的经典优化技术之一:数组边界检查消除。
12.3.1 方法内联

方法内联,说它是编译器最重要的优化手段,甚至都可以不加上“之一”。内联被业内戏称为优化之母,因为除了消除方法调用的成本之外,它更重要的意义是为其他优化手段建立良好的基础。

下面代码所示的简单例子就揭示了内联对其他优化手段的巨大价值:没有内联,多数其他优化都无法有效进行。例子里testInline()方法的内部全部是无用的代码,但如果不做内联,后续即使进行了无用代码消除的优化,也无法发现任何“Dead Code”的存在。如果分开来看,foo()和testInline()两个方法里面的操作都有可能是有意义的。

public static void foo(Object obj) { 
if (obj != null) { System.out.println("do something"); } }
public static void testInline(String[] args) { 
Object obj = null; foo(obj); 
}

方法内联的优化行为理解起来是没有任何困难的,不过就是把目标方法的代码原封不动地“复制”到发起调用的方法之中,避免发生真实的方法调用而已。但实际上Java虚拟机中的内联过程却远没有想象中容易,甚至如果不是即时编译器做了一些特殊的努力,按照经典编译原理的优化理论,大多 数的Java方法都无法进行内联。

无法内联原因前面已经解释过:只有使用invokespecial指令调用的私有方法、实例构造器、父类方法和使用invokestatic指令调用的静态方法才会在编译期进行解析。除了上述四种方法之外(最多再除去被final修饰的方法这种特殊情况,尽管它使用invokevirtual指令调用,但也是非虚方法,《Java语言规范》中明确说明了这点),其他的Java方法调用都必须在运行时进行方法接收者的多态选择,它们都有可能存在多于一个版本的方法接收者,简而言之,Java语言中默认的实例方法是虚方法。

对于一个虚方法,编译器静态地去做内联的时候很难确定应该使用哪个方法版本,以将上面代码直接内联为b.value为例,如果不依赖上下文,是无法确定b的实际类型是什么的。假如有ParentB和SubB是两个具有继承关系的父子类型,并且子类重写了父类的get()方法,那么b.get()是执行父类的get()方法还是子类的get()方法,这应该是根据实际类型动态分派的,而实际类型必须在实际运行到这一行代码时才能确定,编译器很难在编译时得出绝对准确的结论。

更糟糕的情况是,由于Java提倡使用面向对象的方式进行编程,而Java对象的方法默认就是虚方法,可以说Java间接鼓励了程序员使用大量的虚方法来实现程序逻辑。根据上面的分析可知,内联与虚方法之间会产生“矛盾”,那是不是为了提高执行性能,就应该默认给每个方法都使用final关键字去 修饰呢?C和C++语言的确是这样做的,默认的方法是非虚方法,如果需要用到多态,就用virtual关键字来修饰,但Java选择了在虚拟机中解决这个问题。

为了解决虚方法的内联问题,Java虚拟机首先引入了一种名为**类型继承关系分析(Class Hierarchy Analysis,CHA)**的技术,这是整个应用程序范围内的类型分析技术,**用于确定在目前已加载的类 中,某个接口是否有多于一种的实现、某个类是否存在子类、某个子类是否覆盖了父类的某个虚方法等信息。**这样,编译器在进行内联时就会分不同情况采取不同的处理:如果是非虚方法,那么直接进行内联就可以了,这种的内联是有百分百安全保障的;如果遇到虚方法,则会向CHA查询此方法在当前程序状态下是否真的有多个目标版本可供选择,如果查询到只有一个版本,那就可以假设“应用程序的全貌就是现在运行的这个样子”来进行内联,这种内联被称为守护内联(Guarded Inlining)。不过由 于Java程序是动态连接的,说不准什么时候就会加载到新的类型从而改变CHA结论,因此这种内联属于激进预测性优化,必须预留好“逃生门”,即当假设条件不成立时的“退路”(Slow Path)。假如在程序的后续执行过程中,虚拟机一直没有加载到会令这个方法的接收者的继承关系发生变化的类,那这 个内联优化的代码就可以一直使用下去。如果加载了导致继承关系发生变化的新类,那么就必须抛已经编译的代码,退回到解释状态进行执行,或者重新进行编译。

假如向CHA查询出来的结果是该方法确实有多个版本的目标方法可供选择,那即时编译器还将进行最后一次努力,使用内联缓存(Inline Cache)的方式来缩减方法调用的开销。这种状态下方法调用是真正发生了的,但是比起直接查虚方法表还是要快一些。内联缓存是一个建立在目标方法正常入口之前的缓存,它的工作原理大致为:在未发生方法调用之前,内联缓存状态为空,当第一次调用发生后,缓存记录下方法接收者的版本信息,并且每次进行方法调用时都比较接收者的版本。如果以后进来的每次调用的方法接收者版本都是一样的,那么这时它就是一种单态内联缓存(Monomorphic Inline Cache)。通过该缓存来调用,比用不内联的非虚方法调用,仅多了一次类型判断的开销而已。但如果真的出现方法接收者不一致的情况,就说明程序用到了虚方法的多态特性,这时候会退化成超多态内联缓存(Megamorphic Inline Cache),其开销相当于真正查找虚方法表来进行方法分派。所以说,在多数情况下Java虚拟机进行的方法内联都是一种激进优化。

12.3.2 逃逸分析

逃逸分析(Escape Analysis)是目前Java虚拟机中比较前沿的优化技术,它与类型继承关系分析一样,并不是直接优化代码的手段,而是为其他优化措施提供依据的分析技术。

逃逸分析的基本原理是:分析对象动态作用域,当一个对象在方法里面被定义后,它可能被外部方法所引用,例如作为调用参数传递到其他方法中,这种称为方法逃逸;甚至还有可能被外部线程访问到,譬如赋值给可以在其他线程中访问的实例变量,这种称为线程逃逸;从不逃逸、方法逃逸到线程逃逸,称为对象由低到高的不同逃逸程度。

如果能证明一个对象不会逃逸到方法或线程之外(换句话说是别的方法或线程无法通过任何途径访问到这个对象),或者逃逸程度比较低(只逃逸出方法而不会逃逸出线程),则可能为这个对象实例采取不同程度的优化,如:

  • 栈上分配(Stack Allocations):在Java虚拟机中,Java堆上分配创建对象的内存空间几乎是Java程序员都知道的常识,Java堆中的对象对于各个线程都是共享和可见的,只要持有这个对象的引用,就可以访问到堆中存储的对象数据。虚拟机的垃圾收集子系统会回收堆中不再使用的对象,但回收动作无论是标记筛选出可回收对象,还是回收和整理内存,都需要耗费大量资源。如果确定一个对象不会逃逸出线程之外,那让这个对象在栈上分配内存将会是一个很不错的主意,对象所占用的内存空间就可以随栈帧出栈而销毁。在一般应用中,完全不会逃逸的局部对象和不会逃逸出线程的对象所占的比例是很大的,如果能使用栈上分配,那大量的对象就会随着方法的结束而自动销毁了,垃圾收集子系统的压力将会下降很多。栈上分配可以支持方法逃逸,但不能支持线程逃逸。
  • 标量替换(Scalar Replacement):若一个数据已经无法再分解成更小的数据来表示了,Java虚拟机中的原始数据类型(int、long等数值类型及reference类型等)都不能再进一步分解了,那么这些数据就可以被称为标量。相对的,如果一个数据可以继续分解,那它就被称为聚合量(Aggregate),Java中的对象就是典型的聚合量。如果把一个Java对象拆散,根据程序访问的情况,将其用到的成员变量恢复为原始类型来访问,这个过程就称为标量替换。假如逃逸分析能够证明一个对象不会被方法外部访问,并且这个对象可以被拆散,那么程序真正执行的时候将可能不去创建这个对象,而改为直接创建它的若干个被这个方法使用的成员变量来代替。将对象拆分后,除了可以让对象的成员变量在栈上(栈上存储的数据,很大机会被虚拟机分配至物理机器的高速寄存器中存储)分配和读写之外,还可以为后续进一步的优化手段创建条件。标量替换可以视作栈上分配的一种特例,实现更简单(不用考虑整个对象完整结构的分配),但对逃逸程度的要求更高,它不允许对象逃逸出方法范围内。 (线程逃逸要求松一些 因为整个栈是线程私有的,方法对应栈帧,栈帧只是栈中的一小部分)
  • 同步消除(Synchronization Elimination):线程同步本身是一个相对耗时的过程,如果逃逸分析能够确定一个变量不会逃逸出线程,无法被其他线程访问,那么这个变量的读写肯定就不会有竞争,对这个变量实施的同步措施也就可以安全地消除掉。

下面将通过一系列Java伪代码的变化过程来模拟逃逸分析是如何工作的:

// 完全未优化的代码 
public int test(int x) { 
	int xx = x + 2; 
	Point p = new Point(xx, 42); 
	return p.getX(); 
}

第一步,将Point的构造函数和getX()方法进行内联优化:

// 步骤1:构造函数内联后的样子 
public int test(int x) { 
	int xx = x + 2; 
	Point p = point_memory_alloc(); 
	// 在堆中分配P对象的示意方法 
	p.x = xx; 
	// Point构造函数被内联后的样子 
	p.y = 42;
    return p.x; 
	// Point::getX()被内联后的样子 
}

第二步,经过逃逸分析,发现在整个test()方法的范围内Point对象实例不会发生任何程度的逃逸,这样可以对它进行标量替换优化,把其内部的x和y直接置换出来,分解为test()方法内的局部变量,从而避免Point对象实例被实际创建,优化后的结果如下所示:

// 步骤2:标量替换后的样子 
public int test(int x) { 
	int xx = x + 2; 
	int px = xx; 
	int py = 42; 
	return px; }

第三步,通过数据流分析,发现py的值其实对方法不会造成任何影响,那就可以放心地去做无效代码消除得到最终优化结果

// 步骤3:做无效代码消除后的样子 
public int test(int x) { return x + 2; }

在实际的应用程序中,尤其是大型程序中反而发现实施逃逸分析可能出现效果不稳定的情况,或分析过程耗时但却无法有效判别出非逃逸对象而导致性能(即时编译的收益)下降,所以曾经在很长的一段时间里,即使是服务端编译器,也默认不开启逃逸分析。

12.3.3 公共子表达式消除

公共子表达式消除是一项非常经典的、普遍应用于各种编译器的优化技术,它的含义是:如果一个表达式E之前已经被计算过了,并且从先前的计算到现在E中所有变量的值都没有发生变化,那么E的这次出现就称为公共子表达式。对于这种表达式,没有必要花时间再对它重新进行计算,只需要直接用前面计算过的表达式结果代替E。如果这种优化仅限于程序基本块内,便可称为局部公共子表达式消除(Local Common Subexpression Elimination),如果这种优化的范围涵盖了多个基本块,那就称为全局公共子表达式消除(Global Common Subexpression Elimination)。

如下代码:

int d = (c * b) * 12 + a + (a + b * c);

如果这段代码交给Javac编译器则不会进行任何优化,那生成的代码将如下所示,是完全遵照Java源码的写法直译而成的。

image-20210827194131980

当这段代码进入虚拟机即时编译器后,它将进行如下优化:编译器检测到cb与bc是一样的表达式,而且在计算期间b与c的值是不变的。因此这条表达式就可能被视为:

int d = E * 12 + a + (a + E);

这时候,编译器还可能(取决于哪种虚拟机的编译器以及具体的上下文而定)进行另外一种优化——代数化简(Algebraic Simplification),在E本来就有乘法运算的前提下,把表达式变为:

int d = E * 13 + a + a;
12.3.4 数组边界检查消除

我们知道Java语言是一门动态安全的语言,对数组的读写访问也不像C、C++那样实质上就是裸指针操作。如果有一个数组foo[],在Java语言中访问数组元素foo[i]的时候系统将会自动进行上下界的范围检查,即i必须满足“i>=0&&i<foo.length”的访问条件,否则将抛出一个运行时异常: java.lang.ArrayIndexOutOfBoundsException。这对软件开发者来说是一件很友好的事情,即使程序员没有专门编写防御代码,也能够避免大多数的溢出攻击。但是对于虚拟机的执行子系统来说,每次数组元素的读写都带有一次隐含的条件判定操作(此时是由虚拟机执行时候一个个判断并非编译期在数据流分析时一次性判断),对于拥有大量数组访问的程序代码,这必定是一种性能负担。

无论如何,为了安全,数组边界检查肯定是要做的,但数组边界检查是不是必须在运行期间一次不漏地进行则是可以“商量”的事情。例如下面这个简单的情况:数组下标是一个常量,如foo[3],只要在编译期根据数据流分析来确定foo.length的值,并判断下标“3”没有越界,执行的时候就无须判断了。更加常见的情况是,数组访问发生在循环之中,并且使用循环变量来进行数组的访问。如果编译器只要通过数据流分析就可以判定循环变量的取值范围永远在区间[0,foo.length)之内,那么在循环中就可以把整个数组的上下界检查消除掉,这可以节省很多次的条件判断操作。

把这个数组边界检查的例子放在更高的视角来看,大量的安全检查使编写Java程序比编写C和C++程序容易了很多,比如:数组越界会得到ArrayIndexOutOfBoundsException异常;空指针访问会得到NullPointException异常;除数为零会得到ArithmeticException异常……在C和C++程序中出现类似的问题,一个不小心就会出现Segment Fault信号或者Windows编程中常见的“XXX内存不能为Read/Write”之类的提示,处理不好程序就直接崩溃退出了。但这些安全检查也导致出现相同的程序,从而使Java比C和C++要做更多的事情(各种检查判断),这些事情就会导致一些隐式开销,如果不处理好它们,就很可能成为一项“Java语言天生就比较慢”的原罪。为了消除这些隐式开销,除了如数组边界检查优化这种尽可能把运行期检查提前到编译期完成的思路之外,还有一种避开的处理思路——隐式异常处理,Java中空指针检查和算术运算中除数为零的检查都采用了这种方案。

if (foo != null) { return foo.value; }
else{throw new NullPointException(); }

在使用隐式异常优化之后,虚拟机会把上面的伪代码所表示的访问过程变为如下伪代码:

try {return foo.value; } 
catch (segment_fault) { uncommon_trap(); }

虚拟机会注册一个Segment Fault信号的异常处理器(伪代码中的uncommon_trap(),务必注意这里是指进程层面的异常处理器,并非真的Java的try-catch语句的异常处理器),这样当foo不为空的时候,对value的访问是不会有任何额外对foo判空的开销的,而代价就是当foo真的为空时,必须转到异常处理器中恢复中断并抛出NullPointException异常。进入异常处理器的过程涉及进程从用户态转到内核态中处理的过程,结束后会再回到用户态,速度远比一次判空检查要慢得多。当foo极少为空的时候,隐式异常优化是值得的,但假如foo经常为空,这样的优化反而会让程序更慢。幸好HotSpot虚拟机足够聪明,它会根据运行期收集到的性能监控信息自动选择最合适的方案。

12.4 实战:深入理解Graal编译器

13 高效并发

13.1 硬件的效率与一致性

绝大多数的运算任务都不可能只靠处理器“计算”就能完成。处理器至少要与内存交互,如读取运算数据、存储运算结果等,这个I/O操作就是很难消除的(无法仅靠寄存器来完成所有运算任务)。由于计算机的存储设备与处理器的运算速度有着几个数量级的差距,所以现代计算机系统都不得不加入一层或多 层读写速度尽可能接近处理器运算速度的高速缓存(Cache)来作为内存与处理器之间的缓冲:将运算需要使用的数据复制到缓存中,让运算能快速进行,当运算结束后再从缓存同步回内存之中,这样处理器就无须等待缓慢的内存读写了。

基于高速缓存的存储交互很好地解决了处理器与内存速度之间的矛盾,但是也为计算机系统带来更高的复杂度,它引入了一个新的问题:缓存一致性(Cache Coherence)。在多路处理器系统中,每 个处理器都有自己的高速缓存,而它们又共享同一主内存(Main Memory),这种系统称为共享内存 多核系统(Shared Memory Multiprocessors System)

当多个处理器的运算任务都涉及同一块主内存区域时,将可能导致各自的缓存数据不一致。如果真的发生这种情况,那同步回到主内存时该以谁的缓存数据为准呢?为了解决一致性的问题,需要各个处理器访问缓存时都遵循一些协议,在读写时要根据协议来进行操作,这类协议有MSI、MESI(Illinois Protocol)、MOSI、Synapse、Firefly及Dragon Protocol等。

内存模型可以理解为在特定的操作协议下,对特定的内存或高速缓存进行读写访问的过程抽象。不同架构的物理机器可以拥有不一样的内存模型,而Java虚拟机也有自己的内存模型。

image-20210829084847204

除了增加高速缓存之外,为了使处理器内部的运算单元能尽量被充分利用,处理器可能会对输入代码进行乱序执行(Out-Of-Order Execution)优化,处理器会在计算之后将乱序执行的结果重组,保证该结果与顺序执行的结果是一致的,但并不保证程序中各个语句计算的先后顺序与输入代码中的顺序一致,因此如果存在一个计算任务依赖另外一个计算任务的中间结果,那么其顺序性并不能靠代码的先后顺序来保证。与处理器的乱序执行优化类似,Java虚拟机的即时编译器中也有指令重排序(Instruction Reorder)优化。

13.2 Java内存模型

“Java内存模型”是用来屏蔽各种硬件和操作系统的内存访问差异,以实现让Java程序在各种平台下都能达到一致的内存访问效果。

定义Java内存模型并非一件容易的事情,这个模型必须定义得足够严谨,才能让Java的并发内存访问操作不会产生歧义;但是也必须定义得足够宽松,使得虚拟机的实现能有足够的自由空间去利用硬件的各种特性(寄存器、高速缓存和指令集中某些特有的指令)来获取更好的执行速度。

13.2.1 主内存与工作内存

Java内存模型的主要目的是定义程序中各种变量的访问规则,即关注在虚拟机中把变量值存储到内存和从内存中取出变量值这样的底层细节。此处的变量(Variables)与Java编程中所说的变量有所区别,它包括了实例字段、静态字段和构成数组对象的元素,但是不包括局部变量与方法参数,因为后者是线程私有的,不会被共享,自然就不会存在竞争问题。为了获得更好的执行效能,Java内存模型并没有限制执行引擎使用处理器的特定寄存器或缓存来和主内存进行交互,也没有限制即时编译器是否要进行调整代码执行顺序这类优化措施。

Java内存模型规定了所有的变量都存储在主内存(Main Memory)中(此处的主内存与介绍物理硬件时提到的主内存名字一样,两者也可以类比,但物理上它仅是虚拟机内存的一部分)。每条线程还有自己的工作内存(Working Memory,可与前面讲的处理器高速缓存类比),线程的工作内存中保存了被该线程使用的变量的主内存副本(如“假设线程中访问一个10MB大小的对象,也会把这10MB的内存复制一份出来吗?”,事实上并不会如此,这个对象的引用、对象中某个在线程访问到的字段是有可能被复制的,但不会有虚拟机把整个对象复制一次。 ),线程对变量的所有操作(读取、赋值等)都必须在工作内存中进行(根据《Java虚拟机规范》的约定,volatile变量依然有工作内存的拷贝,但是由于它特殊的操作顺序性规定,所以看起来如同直接在主内存中读写访问一般,因此这里的描述对于volatile也并不存在例外。),而不能直接读写主内存中的数据。不同的线程之间也无法直接访问对方工作内存中的变量,线程间变量值的传递均需要通过主内存来完成。

image-20210829091222015

这里所讲的主内存、工作内存与第2章所讲的Java内存区域中的Java堆、栈、方法区等并不是同一个层次的对内存的划分,这两者基本上是没有任何关系的。如果两者一定要勉强对应起来,那么从变量、主内存、工作内存的定义来看,主内存主要对应于Java堆中的对象实例数据部分(除了实例数据,Java堆还保存了对象的其他信息,对于HotSpot虚拟机来讲,有Mark Word(存储对象哈希码、GC标志、GC年龄、同步锁等信息)、Klass Point(指向存储类型元数据的指针)及一些用于字节对齐补白的填充数据(如果实例数据刚好满足8字节对齐,则可以不存在补白)。),而工作内存则对应于虚拟机栈中的部分区域。从更基础的层次上说,主内存直接对应于物理硬件的内存,而为了获取更好的运行速度,虚拟机(或者是硬件、操作系统本身的优化措施)可能会让工作内存优先存储于寄存器和高速缓存中,因为程序运行时主要访问的是工作内存。

13.2.2 内存间交互操作

关键字volatile是Java虚拟机提供的最轻量级的同步机制,Synchronize关键字是重量级的。

当一个变量被定义成volatile之后,它将具备两项特性:

  1. 保证此变量对所有线程的可见性,这里的“可见性”是指当一条线程修改了这个变量的值,新值对于其他线程来说是可以立即得知的。而普通变量并不能做到这一点,普通变量的值在线程间传递时均需要通过主内存来完成。比如,线程A修改一个普通变量的值,然后向主内存进行回写,另外一条线程B在线程A回写完成了之后再对主内存进行读取操作,新变量值才会对线程B可见。
  2. 禁止指令重排序优化,普通的变量仅会保证在该方法的执行过程中所有依赖赋值结果的地方都能获取到正确的结果而不能保证变量赋值操作的顺序与程序代码中的执行顺序一致。因为在同一个线程的方法执行过程中无法感知到这点,这就是Java内存模型中描述的所谓“线程内表现为串行的语义”(Within-Thread As-If-Serial Semantics)。

关于volatile变量的可见性,经常会被开发人员误解,他们会误以为下面的描述是正确的:“volatile变量对所有线程是立即可见的,对volatile变量所有的写操作都能立刻反映到其他线程之中。换句话说,volatile变量在各个线程中是一致的,所以基于volatile变量的运算在并发下是线程安全的”。这句话的论据部分并没有错,但是由其论据并不能得出“基于volatile变量的运算在并发下是线程安全的”这样的结论。volatile变量在各个线程的工作内存中是不存在一致性问题的(从物理存储的角度看,各个线程的工作内存中volatile变量也可以存在不一致的情况,但由于每次使用之前都要先刷新,执行引擎看不到不一致的情况,因此可以认为不存在一致性问题),但是Java里面的运算操作符并非原子操作,这导致volatile变量的运算在并发下一样是不安全的

Volatile的运算:

/*** volatile变量自增运算测试 **  */ 
public class VolatileTest { 
public static volatile int race = 0; 
public static void increase() { race++; }
private static final int THREADS_COUNT = 20; 
public static void main(String[] args) { 
Thread[] threads = new Thread[THREADS_COUNT]; 
for (int i = 0; i < THREADS_COUNT; i++) { 
threads[i] = new Thread(
    new Runnable() { 
@Override 
public void run() { 
    for (int i = 0; i < 10000; i++) { increase(); }
} }); 
threads[i].start(); 
}
// 等待所有累加线程都结束 
while (Thread.activeCount() > 1) Thread.yield(); System.out.println(race); } }

这段代码发起了20个线程,每个线程对race变量进行10000次自增操作,如果这段代码能够正确并发的话,最后输出的结果应该是200000。读者运行完这段代码之后,并不会获得期望的结果,而且会发现每次运行程序,输出的结果都不一样,都是一个小于200000的数字。这是为什么呢?

问题就出在自增运算“race++”之中,我们用Javap反编译这段代码后会得到代码所示,发现只有一行代码的increase()方法在Class文件中是由4条字节码指令构成(return指令不是由race++产生的,这条指令可以不计算),从字节码层面上已经很容易分析出并发失败的原因了:当getstatic指令把race的值取到操作栈顶时,volatile关键字保证了race的值在此时是正确的,但是在执行iconst_1、iadd这些指令的时候,其他线程可能已经把race的值改变了,而操作栈顶的值就变成了过期的数据,所以putstatic指令执行后就可能把较小的race值同步回主内存之中。

image-20210829095658527

实事求是地说,笔者使用字节码来分析并发问题仍然是不严谨的,因为即使编译出来只有一条字节码指令,也并不意味执行这条指令就是一个原子操作。一条字节码指令在解释执行时,解释器要运行许多行代码才能实现它的语义。如果是编译执行,一条字节码指令也可能转化成若干条本地机器码指令。

由于volatile变量只能保证可见性,在不符合以下两条规则的运算场景中,我们仍然要通过加锁(使用synchronized、java.util.concurrent中的锁或原子类)来保证原子性:

  • 运算结果并不依赖变量的当前值,或者能够确保只有单一的线程修改变量的值。
  • 变量不需要与其他的状态变量共同参与不变约束。

下面代码这类场景中就很适合使用volatile变量来控制并发,当shutdown()方法被调用时,能保证所有线程中执行的doWork()方法都立即停下来。

volatile boolean shutdownRequested; 
public void shutdown() 
{ shutdownRequested = true; }

public void doWork() { 
while (!shutdownRequested) { // 代码的业务逻辑 } 
}

指令重排序:

Map configOptions; 
char[] configText; 
// 此变量必须定义为 volatile 
volatile boolean initialized = false; 
// 假设以下代码在线程A中执行 
// 模拟读取配置信息,当读取完成后 
// 将initialized设置为true,通知其他线程配置可用 
configOptions = new HashMap(); 
configText = readConfigFile(fileName); processConfigOptions(configText, configOptions); initialized = true; 
// 假设以下代码在线程B中执行 
// 等待initialized为true,代表线程A已经把配置信息初始化完成 
while (!initialized) { sleep(); }
// 使用线程A中初始化好的配置信息 
doSomethingWithConfig();

如果定义initialized变量时没有使用volatile修饰,就可能会由于指令重排序的优化,导致位于线程A中最后一条代码“initialized=true”被提前执行(这里虽然使用Java作为伪代码,但所指的重排序优化是机器级的优化操作,提前执行是指这条语句对应的汇编代码被提前执行),这样在线程B中使用配置信息的代码就可能出现错误,而volatile关键字则可以避免此类情况的发生。

下面是一段标准的双锁检测(Double Check Lock,DCL)单例代码:用来演示volatile关键字如何禁止指令重排序的。

DCL单例模式 :

public class Singleton { 
	private volatile static Singleton instance; 
	public static Singleton getInstance() { 
		if (instance == null) { 
		synchronized (Singleton.class) { 
			if (instance == null) { 
			instance = new Singleton(); 
			} 
		} 
	}
	return instance; 
	}
public static void main(String[] args) { 					Singleton.getInstance(); 
	} 
}

编译后,这段代码对instance变量赋值的部分如下:

image-20210829102241658

通过对比发现,关键变化在于有volatile修饰的变量,赋值后(前面mov%eax,0x150(%esi)这句便是赋值操作)多执行了一个**“lock addl$0x0,(%esp)”操作,这个操作的作用相当于一个内存屏障(Memory Barrier或Memory Fence,指重排序时不能把后面的指令重排序到内存屏障之前的位置,注意不要与之前介绍的垃圾收集器用于捕获变量访问的内存屏障互相混淆)**,只有一个处理器访问内存时,并不需要内存屏障;但如果有两个或更多处理器访问同一块内存,且其中有一个在观测另一个,就需要内存屏障来保证一致性了。

这句指令中的“addl$0x0,(%esp)”(把ESP寄存器的值加0)显然是一个空操作,之所以用这个空操作而不是空操作专用指令nop,是因为IA32手册规定lock前缀不允许配合nop指令使用。这里的关键在于lock前缀,查询IA32手册可知,它的作用是将本处理器的缓存写入了内存,该写入动作也会引起别的处理器或者别的内核无效化(Invalidate)其缓存,这种操作相当于对缓存中的变量做了一次前面介绍Java内存模式中所说的“store和write”操作。所以通过这样一个空操作,可让前面volatile变量的修改对其他处理器立即可见。

那为何说它禁止指令重排序呢?从硬件架构上讲,指令重排序是**指处理器采用了允许将多条指令不按程序规定的顺序分开发送给各个相应的电路单元进行处理。但并不是说指令任意重排,处理器必须能正确处理指令依赖情况保障程序能得出正确的执行结果。**譬如指令1把地址A中的值加10,指令2把地址A中的值乘以2,指令3把地址B中的值减去3,这时指令1和指令2是有依赖的,它们之间的顺序不能重排——(A+10)x2与Ax2+10显然不相等,但指令3可以重排到指令1、2之前或者中间,只要保证处理器执行后面依赖到A、B值的操作时能获取正确的A和B值即可。所以在同一个处理器中,重排序过的代码看起来依然是有序的。因此,lock addl$0x0,(%esp)指令把修改同步到内存时,意味着所有之前的操作都已经执行完成,这样便形成了“指令重排序无法越过内存屏障”的效果。

在某些情况下,volatile的同步机制的性能确实要优于锁(使用synchronized关键字或java.util.concurrent包里面的锁),但是由于虚拟机对锁实行的许多消除和优化,使得我们很难确切地说volatile就会比synchronized快上多少。如果让volatile自己与自己比较,那可以确定一个原则:volatile变量读操作的性能消耗与普通变量几乎没有什么差别,但是写操作则可能会慢上一些,因为它需要在本地代码中插入许多内存屏障指令来保证处理器不发生乱序执行。不过即便如此,大多数场景下volatile的总开销仍然要比锁来得更低。我们在volatile与锁中选择的唯一判断依据仅仅是volatile的语义能否满足使用场景的需求。

再回头来看看Java内存模型中对volatile变量定义的特殊规则的定义。假定T表示一个线程,V和W分别表示两个volatile型变量,那么在进行read、load、use、assign、store和write操作时需要满足如下规则:

  • 只有当线程T对变量V执行的前一个动作是load的时候,线程T才能对变量V执行use动作;并且,只有当线程T对变量V执行的后一个动作是use的时候,线程T才能对变量V执行load动作。线程T对变量V的use动作可以认为是和线程T对变量V的load、read动作相关联的,必须连续且一起出现。

这条规则要求在工作内存中,每次使用V前都必须先从主内存刷新最新的值,用于保证能看见其他线程对变量V所做的修改。

  • 只有当线程T对变量V执行的前一个动作是assign的时候,线程T才能对变量V执行store动作;并且,只有当线程T对变量V执行的后一个动作是store的时候,线程T才能对变量V执行assign动作。线程T对变量V的assign动作可以认为是和线程T对变量V的store、write动作相关联的,必须连续且一起出现。

这条规则要求在工作内存中,每次修改V后都必须立刻同步回主内存中,用于保证其他线程可以看到自己对变量V所做的修改。

  • 假定动作A是线程T对变量V实施的use或assign动作,假定动作F是和动作A相关联的load或store动作,假定动作P是和动作F相应的对变量V的read或write动作;与此类似,假定动作B是线程T对变量W实施的use或assign动作,假定动作G是和动作B相关联的load或store动作,假定动作Q是和动作G相应的对变量W的read或write动作。如果A先于B,那么P先于Q。

这条规则要求volatile修饰的变量不会被指令重排序优化,从而保证代码的执行顺序与程序的顺序相同。

13.2.3 针对long和double型变量的特殊规则

Java内存模型要求lock、unlock、read、load、assign、use、store、write这八种操作都具有原子性,但是对于64位的数据类型(long和double),在模型中特别定义了一条宽松的规定:允许虚拟机将没有被volatile修饰的64位数据的读写操作划分为两次32位的操作来进行,即允许虚拟机实现自行选择是否要保证64位数据类型的load、store、read和write这四个操作的原子性,这就是所谓的“long和double的非原子性协定”(Non-Atomic Treatment of double and long Variables)。

13.2.4 针对Long和Double型变量的特殊规则

Java内存模型要求lock、unlock、read、load、assign、use、store、write这八种操作都具有原子性,但是对于64位的数据类型(long和double),在模型中特别定义了一条宽松的规定:允许虚拟机将没有被volatile修饰的64位数据的读写操作划分为两次32位的操作来进行,即允许虚拟机实现自行选择是否要保证64位数据类型的load、store、read和write这四个操作的原子性,这就是所谓的“long和double的非原子性协定”(Non-Atomic Treatment of double and long Variables)。

如果有多个线程共享一个并未声明为volatile的long或double类型的变量,并且同时对它们进行读取和修改操作,那么某些线程可能会读取到一个既不是原值,也不是其他线程修改值的代表了“半个变量”的数值。

13.2.5 原子性、可见性和有序性
13.2.5.1 原子性

由Java内存模型来直接保证的原子性变量操作包括read、load、assign、use、store和write这六个,我们大致可以认为,基本数据类型的访问、读写都是具备原子性的(例外就是long和double的非原子性协定)如果应用场景需要一个更大范围的原子性保证(经常会遇到),Java内存模型还提供了lock和unlock操作来满足这种需求,尽管虚拟机未把lock和unlock操作直接开放给用户使用,但是却提供了更高层次的字节码指令monitorenter和monitorexit来隐式地使用这两个操作。这两个字节码指令反映到Java代码中就是同步块——synchronized关键字,因此在synchronized块之间的操作也具备原子性。

13.2.5.2 可见性

**可见性就是指当一个线程修改了共享变量的值时,其他线程能够立即得知这个修改。**Java内存模型是通过在变量修改后将新值同步回主内存,在变量读取前从主内存刷新变量值这种依赖主内存作为传递媒介的方式来实现可见性的,无论是普通变量还是volatile变量都是如此。普通变量与volatile变量的区别是,volatile的特殊规则保证了新值能立即同步到主内存,以及每次使用前立即从主内存刷新。因此我们可以说volatile保证了多线程操作时变量的可见性,而普通变量则不能保证这一点。

除了volatile之外,Java还有两个关键字能实现可见性,它们是synchronized和final。同步块的可见性是由“对一个变量执行unlock操作之前,必须先把此变量同步回主内存中(执行store、write操作)”这条规则获得的。final关键字的可见性是指:被final修饰的字段在构造器中一旦被初始化完成,并且构造器没有把“this”的引用传递出去(this引用逃逸是一件很危险的事情,其他线程有可能通过这个引用访问到“初始化了一半”的对象),那么在其他线程中就能看见final字段的值。

final与可见性:

public static final int i; 
public final int j; 
static { 
	i = 0; 
	// 省略后续动作 
	}
	{ 
	// 也可以选择在构造函数中初始化 
	j = 0; // 省略后续动作
}
13.2.5.3 有序性

Java内存模型的有序性在前面讲解volatile时也比较详细地讨论过了,Java程序中天然的有序性可以总结为一句话:如果在本线程内观察,所有的操作都是有序的;如果在一个线程中观察另一个线程,所有的操作都是无序的。前半句是指“线程内似表现为串行的语义”(Within-Thread As-If-Serial Semantics),后半句是指**“指令重排序”现象和“工作内存与主内存同步延迟”**现象。

Java语言提供了volatile和synchronized两个关键字来保证线程之间操作的有序性,volatile关键字本身就包含了禁止指令重排序的语义,而synchronized则是由**“一个变量在同一个时刻只允许一条线程对其进行lock操作”**这条规则获得的,这个规则决定了持有同一个锁的两个同步块只能串行地进入。

13.2.6 先行发生原则

如果Java内存模型中所有的有序性都仅靠volatile和synchronized来完成,那么有很多操作都将会变得非常啰嗦,但是我们在编写Java并发代码的时候并没有察觉到这一点,这是因为Java语言中有一个“先行发生”(Happens-Before)的原则。这个原则非常重要,它是判断数据是否存在竞争,线程是否安全的非常有用的手段。依赖这个原则,我们可以通过几条简单规则一揽子解决并发环境下两个操作之间是否可能存在冲突的所有问题,而不需要陷入Java内存模型苦涩难懂的定义之中。

现在就来看看“先行发生”原则指的是什么。先行发生是Java内存模型中定义的两项操作之间的偏序关系,比如说操作A先行发生于操作B,其实就是说在发生操作B之前,操作A产生的影响能被操作B观察到

先行发生原则示例1

// 以下操作在线程A中执行 
i = 1; 
// 以下操作在线程B中执行 
j = i; 
// 以下操作在线程C中执行 
i = 2;

假设线程A中的操作“i=1”先行发生于线程B的操作“j=i”,那我们就可以确定在线程B的操作执行后,变量j的值一定是等于1,得出这个结论的依据有两个:一是根据先行发生原则,“i=1”的结果可以被观察到;二是线程C还没登场,线程A操作结束之后没有其他线程会修改变量i的值。现在再来考虑线程C,我们依然保持线程A和B之间的先行发生关系,而C出现在线程A和B的操作之间,但是C与B没有先行发生关系,那j的值会是多少呢?答案是不确定!1和2都有可能,因为线程C对变量i的影响可能 会被线程B观察到,也可能不会,这时候线程B就存在读取到过期数据的风险,不具备多线程安全性。

下面是Java内存模型下一些“天然的”先行发生关系,这些先行发生关系无须任何同步器协助就已 经存在,可以在编码中直接使用。如果两个操作之间的关系不在此列,并且无法从下列规则推导出 来,则它们就没有顺序性保障,虚拟机可以对它们随意地进行重排序。

  • 程序次序规则(Program Order Rule):在一个线程内,按照控制流顺序,书写在前面的操作先行发生于书写在后面的操作。注意,这里说的是控制流顺序而不是程序代码顺序,因为要考虑分支、循环等结构。
  • 管程锁定规则(Monitor Lock Rule):**一个unlock操作先行发生于后面对同一个锁的lock操作。**这 里必须强调的是“同一个锁”,而“后面”是指时间上的先后。
  • volatile变量规则(Volatile Variable Rule):对一个volatile变量的写操作先行发生于后面对这个变量的读操作,这里的“后面”同样是指时间上的先后。
  • 线程启动规则(Thread Start Rule):Thread对象的start()方法先行发生于此线程的每一个动作。
  • 线程终止规则(Thread Termination Rule):线程中的所有操作都先行发生于对此线程的终止检测,我们可以通过Thread::join()方法是否结束、Thread::isAlive()的返回值等手段检测线程是否已经终止执行。
  • 线程中断规则(Thread Interruption Rule):对线程interrupt()方法的调用先行发生于被中断线程的代码检测到中断事件的发生,可以通过Thread::interrupted()方法检测到是否有中断发生。
  • 对象终结规则(Finalizer Rule):一个对象的初始化完成(构造函数执行结束)先行发生于它的finalize()方法的开始。
  • 传递性(Transitivity):如果操作A先行发生于操作B,操作B先行发生于操作C,那就可以得出 操作A先行发生于操作C的结论。

13.3 Java与线程

13.3.1 线程的实现

线程是比进程更轻量级的调度执行单位,线程的引入,可以把一个进程的资源分配和执行调度分开,各个线程既可以共享进程资源(内存地址、文件I/O等),又可以独立调度。目前线程是Java里面进行处理器资源调度的最基本单位。

Java语言则提供了在不同硬件和操作系统平台下对线程操作的统一处理,每个已经调用过start()方法且还未结束的java.lang.Thread类的实例就代表着一个线程。我们注意到Thread类与大部分的Java类库API有着显著差别,它的所有关键方法都被声明为Native。在Java类库API中,一个Native方法往往就意味着这个方法没有使用或无法使用平台无关的手段来实现(当然也可能是为了执行效率而使用Native方法,不过通常最高效率的手段也就是平台相关的手段)。正因为这个原因,本节的标题被定为“线程的实现”而不是“Java线程的实现”,在稍后介绍的实现方式中,我们也先把Java的技术背景放下,以一个通用的应用程序的角度来看看线程是如何实现的。

实现线程主要有三种方式:使用内核线程实现(1:1实现),使用用户线程实现(1:N实现),使用用户线程加轻量级进程混合实现(N:M实现)。

13.3.1.1 内核线程实现

使用内核线程实现的方式也被称为1:1实现。内核线程(Kernel-Level Thread,KLT)就是直接由操作系统内核(Kernel,下称内核)支持的线程,这种线程由内核来完成线程切换,内核通过操纵调度器(Scheduler)对线程进行调度,并负责将线程的任务映射到各个处理器上。每个内核线程可以视为内核的一个分身,这样操作系统就有能力同时处理多件事情,支持多线程的内核就称为多线程内核(Multi-Threads Kernel)。

程序一般不会直接使用内核线程,而是使用内核线程的一种高级接口——轻量级进程(Light Weight Process,LWP),轻量级进程就是我们通常意义上所讲的线程,由于每个轻量级进程都由一个内核线程支持,因此只有先支持内核线程,才能有轻量级进程。这种轻量级进程与内核线程之间1:1的关系称为一对一的线程模型,如图:
轻量级进程和内核线程之间1:1关系:

image-20210829175643880

由于内核线程的支持,每个轻量级进程都成为一个独立的调度单元,即使其中某一个轻量级进程在系统调用中被阻塞了,也不会影响整个进程继续工作。轻量级进程也具有它的局限性:首先,由于是基于内核线程实现的,所以各种线程操作,如创建、析构及同步,都需要进行系统调用。而系统调用的代价相对较高,需要在用户态(User Mode)和内核态(Kernel Mode)中来回切换。其次,每个轻量级进程都需要有一个内核线程的支持,因此轻量级进程要消耗一定的内核资源(如内核线程的栈空间),因此一个系统支持轻量级进程的数量是有限的。

13.3.1.2 用户线程实现

使用用户线程实现的方式被称为1:N实现。广义上来讲,一个线程只要不是内核线程,都可以认为是用户线程(User Thread,UT)的一种,因此从这个定义上看,轻量级进程也属于用户线程,但轻 量级进程的实现始终是建立在内核之上的,许多操作都要进行系统调用,因此效率会受到限制,并不具备通常意义上的用户线程的优点。

而狭义上的用户线程指的是完全建立在用户空间的线程库上,系统内核不能感知到用户线程的存在及如何实现的。用户线程的建立、同步、销毁和调度完全在用户态中完成,不需要内核的帮助。如 果程序实现得当,这种线程不需要切换到内核态,因此操作可以是非常快速且低消耗的,也能够支持规模更大的线程数量,部分高性能数据库中的多线程就是由用户线程实现的。这种进程与用户线程之间1:N的关系称为一对多的线程模型,如图

image-20210829180311152

用户线程的优势在于不需要系统内核支援,劣势也在于没有系统内核的支援,所有的线程操作都需要由用户程序自己去处理。线程的创建、销毁、切换和调度都是用户必须考虑的问题,而且由于操作系统只把处理器资源分配到进程,那诸如“阻塞如何处理”“多处理器系统中如何将线程映射到其他处理器上”这类问题解决起来将会异常困难,甚至有些是不可能实现的。

Java、Ruby等语言都曾经使用过用户线程,最终又都放弃了使用它。但是近年来许多新的、以高并发为卖点的编程语言又普遍支持了用户线程,譬如Golang、Erlang等,使得用户线程的使用率有所回升。

13.3.1.3 混合实现

线程除了依赖内核线程实现和完全由用户程序自己实现之外,还有一种将内核线程与用户线程一起使用的实现方式,被称为N:M实现。在这种混合实现下,既存在用户线程,也存在轻量级进程。用户线程还是完全建立在用户空间中,因此用户线程的创建、切换、析构等操作依然廉价,并且可以支持大规模的用户线程并发。而操作系统支持的轻量级进程则作为用户线程和内核线程之间的桥梁, 这样可以使用内核提供的线程调度功能及处理器映射,并且用户线程的系统调用要通过轻量级进程来完成,这大大降低了整个进程被完全阻塞的风险。在这种混合模式中,用户线程与轻量级进程的数量比是不定的,是N:M的关系,如图:

image-20210829180844939

13.3.1.4 Java线程的实现

从JDK 1.3起,“主流”平台上的“主流”商用Java虚拟机的线程模型普遍都被替换为基于操作系统原生线程模型来实现,即采用1:1的线程模型。

以HotSpot为例,它的每一个Java线程都是直接映射到一个操作系统原生线程来实现的,而且中间没有额外的间接结构,所以HotSpot自己是不会去干涉线程调度的(可以设置线程优先级给操作系统提供调度建议),全权交给底下的操作系统去处理,所以何时冻结或唤醒线程、该给线程分配多少处理器执行时间、该把线程安排给哪个处理器核心去执行等,都是由操作系统完成的,也都是由操作系统全权决定的。

13.3.2 Java线程调度

线程调度是指系统为线程分配处理器使用权的过程,调度主要方式有两种,分别是协同式(Cooperative Threads-Scheduling)线程调度和抢占式(Preemptive Threads-Scheduling)线程调度

如果使用协同式调度的多线程系统,线程的执行时间由线程本身来控制,线程把自己的工作执行完了之后,要主动通知系统切换到另外一个线程上去。协同式多线程的最大好处是实现简单,而且由于线程要把自己的事情干完后才会进行线程切换,**切换操作对线程自己是可知的,所以一般没有什么线程同步的问题。**Lua语言中的“协同例程”就是这类实现。它的坏处也很明显:**线程执行时间不可控制,甚至如果一个线程的代码编写有问题,一直不告知系统进行线程切换,那么程序就会一直阻塞在那里。**因此是相当不稳定的,只要有一个进程坚持不让出处理器执行时间,就可能会导致整个系统崩溃。

如果使用抢占式调度的多线程系统,那么每个线程将由系统来分配执行时间,线程的切换不由线程本身来决定。譬如在Java中,有Thread::yield()方法可以主动让出执行时间,但是如果想要主动获取执行时间,线程本身是没有什么办法的。在这种实现线程调度的方式下,线程的执行时间是系统可控的,也不会有一个线程导致整个进程甚至整个系统阻塞的问题。Java使用的线程调度方式就是抢占式调度。当一个进程出了问题,我们还可以使用任务管理器把这个进程杀掉,而不至于导致系统崩溃。

虽然说Java线程调度是系统自动完成的,但是我们仍然可以“建议”操作系统给某些线程多分配一点执行时间,另外的一些线程则可以少分配一点——这项操作是通过设置线程优先级来完成的。Java语言一共设置了10个级别的线程优先级(Thread.MIN_PRIORITY至Thread.MAX_PRIORITY)。在两个线程同时处于Ready状态时,优先级越高的线程越容易被系统选择执行。

不过,线程优先级并不是一项稳定的调节手段,很显然因为主流虚拟机上的Java线程是被映射到系统的原生线程上来实现的,所以线程调度最终还是由操作系统说了算。尽管现代的操作系统基本都提供线程优先级的概念,但是并不见得能与Java线程的优先级一一对应,如Solaris中线程有2147483648(2的31次幂)种优先级,但Windows中就只有七种优先级。如果操作系统的优先级比Java线程优先级更多,那问题还比较好处理,中间留出一点空位就是了,但对于比Java线程优先级少的系统,就不得不出现几个线程优先级对应到同一个操作系统优先级的情况了。下表显示了Java线程优 先级与Windows线程优先级之间的对应关系,Windows平台的虚拟机中使用了除THREAD_PRIORITY_IDLE之外的其余6种线程优先级,因此在Windows下设置线程优先级为1和2、3和4、6和7、8和9的效果是完全相同的

Java线程优先级与Windows线程优先级之间的对应关系:

image-20210829183805183

线程优先级并不是一项稳定的调节手段,这不仅仅体现在某些操作系统上不同的优先级实际会变得相同这一点上,还有其他情况让我们不能过于依赖线程优先级:优先级可能会被系统自行改变,例如在Windows系统中存在一个叫“优先级推进器”的功能(Priority Boosting,当然它可以被关掉),大致作用是当系统发现一个线程被执行得特别频繁时,可能会越过线程优先级去为它分配执行时间,从 而减少因为线程频繁切换而带来的性能损耗。因此,我们并不能在程序中通过优先级来完全准确判断一组状态都为Ready的线程将会先执行哪一个。

13.3.3 状态转换

Java语言定义了6种线程状态,在任意一个时间点中,一个线程只能有且只有其中的一种状态,并且可以通过特定的方法在不同状态之间转换。这6种状态分别是:

  • 新建(New):创建后尚未启动的线程处于这种状态。

  • 运行(Runnable):包括操作系统线程状态中的Running和Ready,也就是处于此状态的线程有可能正在执行,也有可能正在等待着操作系统为它分配执行时间。

  • 无限期等待(Waiting):处于这种状态的线程不会被分配处理器执行时间,它们要等待被其他线程显式唤醒。以下方法会让线程陷入无限期的等待状态:

    ■没有设置Timeout参数的Object::wait()方法;

    ■没有设置Timeout参数的Thread::join()方法;

    ■LockSupport::park()方法。

  • 限期等待(Timed Waiting):处于这种状态的线程也不会被分配处理器执行时间,不过无须等待被其他线程显式唤醒,在一定时间之后它们会由系统自动唤醒。以下方法会让线程进入限期等待状 态:

    ■Thread::sleep()方法;

    ■设置了Timeout参数的Object::wait()方法;

    ■设置了Timeout参数的Thread::join()方法;

    ■LockSupport::parkNanos()方法;

    ■LockSupport::parkUntil()方法。

  • 阻塞(Blocked):线程被阻塞了,**“阻塞状态”与“等待状态”的区别是“阻塞状态”在等待着获取到一个排它锁,这个事件将在另外一个线程放弃这个锁的时候发生;而“等待状态”则是在等待一段时间,或者唤醒动作的发生。**在程序等待进入同步区域的时候,线程将进入这种状态。

  • 结束(Terminated):已终止线程的线程状态,线程已经结束执行。

上述6种状态在遇到特定事件发生的时候将会互相转换,它们的转换关系如图:

image-20210829184658769

13.4 Java与协程

在Java时代的早期,Java语言抽象出来隐藏了各种操作系统线程差异性的统一线程接口,这曾经是它区别于其他编程语言的一大优势。在此基础上,涌现过无数多线程的应用与框架,譬如在网页访问时,HTTP请求可以直接与Servlet API中的一条处理线程绑定在一起,以“一对一服务”的方式处理由浏览器发来的信息。语言与框架已经自动屏蔽了相当多同步和并发的复杂性,对于普通开发者而言,几乎不需要专门针对多线程进行学习训练就能完成一般的并发任务。时至今日,这种便捷的并发编程方式和同步的机制依然在有效地运作着,但是在某些场景下,却也已经显现出了疲态。

13.4.1 内核线程的局限

今天对Web应用的服务要求,不论是在请求数量上还是在复杂度上,与十多年前相比已不可同日而语,这一方面是源于业务量的增长,另一方面来自于为了应对业务复杂化而不断进行的服务细分。现代B/S系统中一次对外部业务请求的响应,往往需要分布在不同机器上的大量服务共同协作来实现,这种服务细分的架构在减少单个服务复杂度、增加复用性的同时,也不可避免地增加了服务的数量,缩短了留给每个服务的响应时间。这要求每一个服务都必须在极短的时间内完成计算,这样组合多个服务的总耗时才不会太长;也要求每一个服务提供者都要能同时处理数量更庞大的请求,这样才不会出现请求由于某个服务被阻塞而出现等待。

Java目前的并发编程机制就与上述架构趋势产生了一些矛盾,1:1的内核线程模型是如今Java虚拟机线程实现的主流选择,但是这种映射到操作系统上的线程天然的缺陷是切换、调度成本高昂,系统能容纳的线程数量也很有限。以前处理一个请求可以允许花费很长时间在单体应用中,具有这种线程切换的成本也是无伤大雅的,但现在在每个请求本身的执行时间变得很短、数量变得很多的前提下,用户线程切换的开销甚至可能会接近用于计算本身的开销,这就会造成严重的浪费。

传统的Java Web服务器的线程池的容量通常在几十个到两百之间,当程序员把数以百万计的请求往线程池里面灌时,系统即使能处理得过来,但其中的切换损耗也是相当可观的。

13.4.2 协程的复苏

内核线程的调度成本主要来自于用户态与核心态之间的状态转换,而这两种状态转换的开销主要来自于响应中断、保护和恢复执行现场的成本。请试想以下场景,假设发生了这样一次线程切换:

线程A -> 系统中断 -> 线程B

处理器要去执行线程A的程序代码时,并不是仅有代码程序就能跑得起来,程序是数据与代码的组合体,代码执行时还必须要有上下文数据的支撑。而这里说的“上下文”,以程序员的角度来看,是方法调用过程中的各种局部的变量与资源;以线程的角度来看,是方法的调用栈中存储的各类信息;而以操作系统和硬件的角度来看,则是存储在内存、缓存和寄存器中的一个个具体数值。物理硬件的各种存储设备和寄存器是被操作系统内所有线程共享的资源,当中断发生,从线程A切换到线程B去执行之前,操作系统首先要把线程A的上下文数据妥善保管好,然后把寄存器、内存分页等恢复到线程B挂起时候的状态,这样线程B被重新激活后才能仿佛从来没有被挂起过。这种保护和恢复现场的工作,免不了涉及一系列数据在各种寄存器、缓存中的来回拷贝,当然不可能是一种轻量级的操作。

如果说内核线程的切换开销是来自于保护和恢复现场的成本,那如果改为采用用户线程,这部分开销就能够省略掉吗?答案是“不能”。但是,一旦把保护、恢复现场及调度的工作从操作系统交到程序员手上,那我们就可以打开脑洞,通过玩出很多新的花样来缩减这些开销。

有一些古老的操作系统(譬如DOS)是单人单工作业形式的,天生就不支持多线程,自然也不会有多个调用栈这样的基础设施。而早在那样的蛮荒时代,就已经出现了今天被称为栈纠缠(Stack Twine)的、由用户自己模拟多线程、自己保护恢复现场的工作模式。其大致的原理是通过在内存里划出一片额外空间来模拟调用栈,只要其他“线程”中方法压栈、退栈时遵守规则,不破坏这片空间即可,这样多段代码执行时就会像相互缠绕着一样,非常形象。

到后来,操作系统开始提供多线程的支持,靠应用自己模拟多线程的做法自然是变少了许多,但也并没有完全消失,而是演化为用户线程继续存在。由于最初多数的用户线程是被设计成协同式调度(Cooperative Scheduling)的,所以它有了一个别名——“协程”(Coroutine)。又由于这时候的协程会完整地做调用栈的保护、恢复工作,所以今天也被称为“有栈协程”(Stackfull Coroutine),起这样的名字是为了便于跟后来的“无栈协程”(Stackless Coroutine)区分开。各种语言中的await、async、yield这类关键字。无栈协程本质上是一种有限状态机,状态保存在闭包里,自然比有栈协程恢复调用栈要轻量得多,但功能也相对更有限。(协程的暂停完全由程序控制,线程的阻塞状态是由操作系统内核来进行切换。)

协程的主要优势是轻量,无论是有栈协程还是无栈协程,都要比传统内核线程要轻量得多。如果进行量化的话,那么如果不显式设置-Xss或-XX:ThreadStackSize,则在64位Linux上HotSpot的线程栈容量默认是1MB,此外内核数据结构(Kernel Data Structures)还会额外消耗16KB内存。与之相对的,一个协程的栈通常在几百个字节到几KB之间,所以Java虚拟机里线程池容量达到两百就已经不算小了,而很多支持协程的应用中,同时并存的协程数量可数以十万计。

13.4.3 Java的解决方案

对于有栈协程,有一种特例实现名为纤程(Fiber),这个词最早是来自微软公司,后来微软还推出过系统层面的纤程包来方便应用做现场保存、恢复和纤程调度。

Loom项目背后的意图是重新提供对用户线程的支持,但与过去的绿色线程不同,这些新功能不是为了取代当前基于操作系统的线程实现,而是会有两个并发编程模型在Java虚拟机中并存,可以在程序中同时使用。新模型有意地保持了与目前线程模型相似的API设计,它们甚至可以拥有一个共同的基类,这样现有的代码就不需要为了使用纤程而进行过多改动,甚至不需要知道背后采用了哪个并发编程模型。

14 线程安全与锁优化

14.1 线程安全

当多个线程同时访问一个对象时,如果不用考虑这些线程在运行时环境下的调度和交替执行,也不需要进行额外的同步,或者在调用方进行任何其他的协调操作,调用这个对象的行为都可以获得正确的结果,那就称这个对象是线程安全的。

14.1.1 Java语言中的线程安全

将Java语言中各种操作共享的数据分为以下五类:不可变、绝对线程安全、相对线程安全、线程兼容和线程对立。

14.1.1.1 不可变

在Java语言里面(特指JDK 5以后,即Java内存模型被修正之后的Java语言),不可变(Immutable)的对象一定是线程安全的,无论是对象的方法实现还是方法的调用者,都不需要再进行任何线程安全保障措施。

只要一个不可变的对象被正确地构建出来(即没有发生this引用逃逸的情况),那其外部的可见状态永远都不会改变,永远都不会看到它在多个线程之中处于不一致的状态。“不可变”带来的安全性是最直接、最纯粹的。

Java语言中,如果多线程共享的数据是一个基本数据类型,那么只要在定义时使用final关键字修饰它就可以保证它是不可变的。如果共享数据是一个对象,由于Java语言目前暂时还没有提供值类型的支持,那就需要对象自行保证其行为不会对其状态产生任何影响才行。如果读者没想明白这句话所指的意思,不妨类比java.lang.String类的对象实例,它是一个典型的不可变对象,用户调用它的substring()、replace()和concat()这些方法都不会影响它原来的值,只会返回一个新构造的字符串对象。

保证对象行为不影响自己状态的途径有很多种,最简单的一种就是把对象里面带有状态的变量都声明为final,这样在构造函数结束之后,它就是不可变的,例如代码所示的java.lang.Integer构造函数,它通过将内部状态变量value定义为final来保障状态不变。

/*** The value of the <code>Integer</code>. * @serial */

private final int value; 
/*** Constructs a newly allocated <code>Integer</code> object that * represents the specified <code>int</code> value. ** @param value the value to be represented by the * <code>Integer</code> object. */ 

public Integer(int value) { this.value = value; }

在Java类库API中符合不可变要求的类型,除了上面提到的String之外,常用的还有枚举类型及java.lang.Number的部分子类,如Long和Double等数值包装类型、BigInteger和BigDecimal等大数据类型。但同为Number子类型的原子类AtomicInteger和AtomicLong则是可变的

14.1.1.2 绝对线程安全

绝对的线程安全能够完全满足Brian Goetz给出的线程安全的定义,这个定义其实是很严格的,一个类要达到“不管运行时环境如何,调用者都不需要任何额外的同步措施”可能需要付出非常高昂的,甚至不切实际的代价。在Java API中标注自己是线程安全的类,大多数都不是绝对的线程安全。我们可以通过Java API中一个不是“绝对线程安全”的“线程安全类型”来看看这个语境里的“绝对”究竟是什么意思。

如果说java.util.Vector是一个线程安全的容器,相信所有的Java程序员对此都不会有异议,因为它的add()、get()和size()等方法都是被synchronized修饰的,尽管这样效率不高,但保证了具备原子性、可见性和有序性。不过,即使它所有的方法都被修饰成synchronized,也不意味着调用它的时候就永远都不再需要同步手段了

对Vector线程安全的测试 :

private static Vector<Integer> vector = new Vector<Integer>(); 
public static void main(String[] args) { 
while (true) { 
	for (int i = 0; i < 10; i++) 
	{ vector.add(i); }
	Thread removeThread = new Thread(new Runnable() { 		@Override 
	public void run() { 
	for (int i = 0; i < vector.size(); i++) { 					vector.remove(i); 
	} } }); 
	Thread printThread = new Thread(
		new Runnable() { @Override 
		public void run() 
		{ 
			for (int i = 0; i < vector.size(); i++) { 					System.out.println((vector.get(i))); } 
   	 	} }); 		
    removeThread.start(); 
	printThread.start(); 
		//不要同时产生过多的线程,否则会导致操作系统假死 
		while (Thread.activeCount() > 20); } }

运行结果如下:

Exception in thread "Thread-132" java.lang.ArrayIndexOutOfBoundsException:
Array index out of range: 17 
    at java.util.Vector.remove(Vector.java:777) 
    at org.fenixsoft.mulithread.VectorTest$1.run(VectorTest.java:21) 
    at java.lang.Thread.run(Thread.java:662)

很明显,尽管这里使用到的Vector的get()、remove()和size()方法都是同步的,但是在多线程的环境中,如果不在方法调用端做额外的同步措施,使用这段代码仍然是不安全的。因为如果另一个线程恰好在错误的时间里删除了一个元素,导致序号i已经不再可用,再用i访问数组就会抛出一个ArrayIndexOutOfBoundsException异常。如果要保证这段代码能正确执行下去,我们不得不把removeThread和printThread的定义改成下面所示代码

必须加入同步保证Vector访问的线程安全性:

Thread removeThread = new Thread(new Runnable() 
{ 
	@Override 
	public void run() { 
		synchronized (vector) { 
		for (int i = 0; i < vector.size(); i++) { 					vector.remove(i); } } } }
); 
Thread printThread = new Thread(new Runnable() {
	@Override 
	public void run() { 
		synchronized (vector) { 
		for (int i = 0; i < vector.size(); i++) { System.out.println((vector.get(i))); } } } });

假如Vector一定要做到绝对的线程安全,那就必须在它内部维护一组一致性的快照访问才行,每次对其中元素进行改动都要产生新的快照,这样要付出的时间和空间成本都是非常大的。

14.1.1.3 相对线程安全

景,假设发生了这样一次线程切换:

线程A -> 系统中断 -> 线程B

处理器要去执行线程A的程序代码时,并不是仅有代码程序就能跑得起来,程序是数据与代码的组合体,代码执行时还必须要有上下文数据的支撑。而这里说的“上下文”,以程序员的角度来看,是方法调用过程中的各种局部的变量与资源;以线程的角度来看,是方法的调用栈中存储的各类信息;而以操作系统和硬件的角度来看,则是存储在内存、缓存和寄存器中的一个个具体数值。物理硬件的各种存储设备和寄存器是被操作系统内所有线程共享的资源,当中断发生,从线程A切换到线程B去执行之前,操作系统首先要把线程A的上下文数据妥善保管好,然后把寄存器、内存分页等恢复到线程B挂起时候的状态,这样线程B被重新激活后才能仿佛从来没有被挂起过。这种保护和恢复现场的工作,免不了涉及一系列数据在各种寄存器、缓存中的来回拷贝,当然不可能是一种轻量级的操作。

如果说内核线程的切换开销是来自于保护和恢复现场的成本,那如果改为采用用户线程,这部分开销就能够省略掉吗?答案是“不能”。但是,一旦把保护、恢复现场及调度的工作从操作系统交到程序员手上,那我们就可以打开脑洞,通过玩出很多新的花样来缩减这些开销。

有一些古老的操作系统(譬如DOS)是单人单工作业形式的,天生就不支持多线程,自然也不会有多个调用栈这样的基础设施。而早在那样的蛮荒时代,就已经出现了今天被称为栈纠缠(Stack Twine)的、由用户自己模拟多线程、自己保护恢复现场的工作模式。其大致的原理是通过在内存里划出一片额外空间来模拟调用栈,只要其他“线程”中方法压栈、退栈时遵守规则,不破坏这片空间即可,这样多段代码执行时就会像相互缠绕着一样,非常形象。

到后来,操作系统开始提供多线程的支持,靠应用自己模拟多线程的做法自然是变少了许多,但也并没有完全消失,而是演化为用户线程继续存在。由于最初多数的用户线程是被设计成协同式调度(Cooperative Scheduling)的,所以它有了一个别名——“协程”(Coroutine)。又由于这时候的协程会完整地做调用栈的保护、恢复工作,所以今天也被称为“有栈协程”(Stackfull Coroutine),起这样的名字是为了便于跟后来的“无栈协程”(Stackless Coroutine)区分开。各种语言中的await、async、yield这类关键字。无栈协程本质上是一种有限状态机,状态保存在闭包里,自然比有栈协程恢复调用栈要轻量得多,但功能也相对更有限。(协程的暂停完全由程序控制,线程的阻塞状态是由操作系统内核来进行切换。)

协程的主要优势是轻量,无论是有栈协程还是无栈协程,都要比传统内核线程要轻量得多。如果进行量化的话,那么如果不显式设置-Xss或-XX:ThreadStackSize,则在64位Linux上HotSpot的线程栈容量默认是1MB,此外内核数据结构(Kernel Data Structures)还会额外消耗16KB内存。与之相对的,一个协程的栈通常在几百个字节到几KB之间,所以Java虚拟机里线程池容量达到两百就已经不算小了,而很多支持协程的应用中,同时并存的协程数量可数以十万计。

13.4.3 Java的解决方案

对于有栈协程,有一种特例实现名为纤程(Fiber),这个词最早是来自微软公司,后来微软还推出过系统层面的纤程包来方便应用做现场保存、恢复和纤程调度。

Loom项目背后的意图是重新提供对用户线程的支持,但与过去的绿色线程不同,这些新功能不是为了取代当前基于操作系统的线程实现,而是会有两个并发编程模型在Java虚拟机中并存,可以在程序中同时使用。新模型有意地保持了与目前线程模型相似的API设计,它们甚至可以拥有一个共同的基类,这样现有的代码就不需要为了使用纤程而进行过多改动,甚至不需要知道背后采用了哪个并发编程模型。

14 线程安全与锁优化

14.1 线程安全

当多个线程同时访问一个对象时,如果不用考虑这些线程在运行时环境下的调度和交替执行,也不需要进行额外的同步,或者在调用方进行任何其他的协调操作,调用这个对象的行为都可以获得正确的结果,那就称这个对象是线程安全的。

14.1.1 Java语言中的线程安全

将Java语言中各种操作共享的数据分为以下五类:不可变、绝对线程安全、相对线程安全、线程兼容和线程对立。

14.1.1.1 不可变

在Java语言里面(特指JDK 5以后,即Java内存模型被修正之后的Java语言),不可变(Immutable)的对象一定是线程安全的,无论是对象的方法实现还是方法的调用者,都不需要再进行任何线程安全保障措施。

只要一个不可变的对象被正确地构建出来(即没有发生this引用逃逸的情况),那其外部的可见状态永远都不会改变,永远都不会看到它在多个线程之中处于不一致的状态。“不可变”带来的安全性是最直接、最纯粹的。

Java语言中,如果多线程共享的数据是一个基本数据类型,那么只要在定义时使用final关键字修饰它就可以保证它是不可变的。如果共享数据是一个对象,由于Java语言目前暂时还没有提供值类型的支持,那就需要对象自行保证其行为不会对其状态产生任何影响才行。如果读者没想明白这句话所指的意思,不妨类比java.lang.String类的对象实例,它是一个典型的不可变对象,用户调用它的substring()、replace()和concat()这些方法都不会影响它原来的值,只会返回一个新构造的字符串对象。

保证对象行为不影响自己状态的途径有很多种,最简单的一种就是把对象里面带有状态的变量都声明为final,这样在构造函数结束之后,它就是不可变的,例如代码所示的java.lang.Integer构造函数,它通过将内部状态变量value定义为final来保障状态不变。

/*** The value of the <code>Integer</code>. * @serial */

private final int value; 
/*** Constructs a newly allocated <code>Integer</code> object that * represents the specified <code>int</code> value. ** @param value the value to be represented by the * <code>Integer</code> object. */ 

public Integer(int value) { this.value = value; }

在Java类库API中符合不可变要求的类型,除了上面提到的String之外,常用的还有枚举类型及java.lang.Number的部分子类,如Long和Double等数值包装类型、BigInteger和BigDecimal等大数据类型。但同为Number子类型的原子类AtomicInteger和AtomicLong则是可变的

14.1.1.2 绝对线程安全

绝对的线程安全能够完全满足Brian Goetz给出的线程安全的定义,这个定义其实是很严格的,一个类要达到“不管运行时环境如何,调用者都不需要任何额外的同步措施”可能需要付出非常高昂的,甚至不切实际的代价。在Java API中标注自己是线程安全的类,大多数都不是绝对的线程安全。我们可以通过Java API中一个不是“绝对线程安全”的“线程安全类型”来看看这个语境里的“绝对”究竟是什么意思。

如果说java.util.Vector是一个线程安全的容器,相信所有的Java程序员对此都不会有异议,因为它的add()、get()和size()等方法都是被synchronized修饰的,尽管这样效率不高,但保证了具备原子性、可见性和有序性。不过,即使它所有的方法都被修饰成synchronized,也不意味着调用它的时候就永远都不再需要同步手段了

对Vector线程安全的测试 :

private static Vector<Integer> vector = new Vector<Integer>(); 
public static void main(String[] args) { 
while (true) { 
	for (int i = 0; i < 10; i++) 
	{ vector.add(i); }
	Thread removeThread = new Thread(new Runnable() { 		@Override 
	public void run() { 
	for (int i = 0; i < vector.size(); i++) { 					vector.remove(i); 
	} } }); 
	Thread printThread = new Thread(
		new Runnable() { @Override 
		public void run() 
		{ 
			for (int i = 0; i < vector.size(); i++) { 					System.out.println((vector.get(i))); } 
   	 	} }); 		
    removeThread.start(); 
	printThread.start(); 
		//不要同时产生过多的线程,否则会导致操作系统假死 
		while (Thread.activeCount() > 20); } }

运行结果如下:

Exception in thread "Thread-132" java.lang.ArrayIndexOutOfBoundsException:
Array index out of range: 17 
    at java.util.Vector.remove(Vector.java:777) 
    at org.fenixsoft.mulithread.VectorTest$1.run(VectorTest.java:21) 
    at java.lang.Thread.run(Thread.java:662)

很明显,尽管这里使用到的Vector的get()、remove()和size()方法都是同步的,但是在多线程的环境中,如果不在方法调用端做额外的同步措施,使用这段代码仍然是不安全的。因为如果另一个线程恰好在错误的时间里删除了一个元素,导致序号i已经不再可用,再用i访问数组就会抛出一个Ar

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值