为什么数组要从 0 开始编号,而不是从 1 开始呢? 从 1 开始不是更符合人类的思维习惯吗?
从数组存储的内存模型上来看,“下标”最确切的定义应该是“偏移(offset)”。如果用 a 来表示数组的首地址,a[0] 就是偏移为 0 的位置,也就是首地址,a[k] 就表示偏移 k 个 type_size 的位置,所以计算 a[k] 的内存地址只需要用这个公式:
a[k]_address = base_address + k * type_size
但是,如果数组从 1 开始计数,那我们计算数组元素 a[k] 的内存地址就会变为:
a[k]_address = base_address + (k-1)*type_size
对比两个公式,我们不难发现,从 1 开始编号,每次随机访问数组元素都多了一次减法运算,对于 CPU 来说,就是多了一次减法指令。
数组作为非常基础的数据结构,通过下标随机访问数组元素又是其非常基础的编程操作,效率的优化就要尽可能做到极致。所以为了减少一次减法操作,数组选择了从 0 开始编号,而不是从 1开始
1.线性表&非线性表
1.1 线性表
数组(Array)是一种线性表数据结构。它用一组连续的内存空间,来存储一组具有相同类型的数据。
**线性表就是数据排成像一条线一样的结构。每个线性表上的数据最多只有前和后两个方向。**其实除了数组,链表、队列、栈等也是线性表结构。
1.2 非线性表
非线性表,比如二叉树、堆、图等。之所以叫非线性,是因为,在非线性表中,数据之间并不是简单的前后关系。
2.数组特点
连续的内存空间和相同类型的数据。
正是因为这两个限制,它才有了一个堪称“杀手锏”的特性:“随机访问”。
但有利就有弊,这两个限制也让数组的很多操作变得非常低效,比如要想在数组中删除、插入一个数据,为了保证连续性,就需要做大量的数据搬移工作。
这里我要特别纠正一个“错误”。我在面试的时候,常常会问数组和链表的区别,很多人都回答说,“链表适合插入、删除,时间复杂度 O(1);数组适合查找,查找时间复杂度为 O(1)”。
实际上,这种表述是不准确的。**数组是适合查找操作,但是查找的时间复杂度并不为 O(1)。即便是排好序的数组,你用二分查找,时间复杂度也是 O(logn)。**所以,正确的表述应该是,数组支持随机访问,根据下标随机访问的时间复杂度为 O(1)。
说到数据的访问,那你知道数组是如何实现根据下标随机访问数组元素的吗?
数组根据下标随机访问的过程:
计算机给数组 a[10],分配了一块连续内存空间 1000~1039,其中,内存块的首地址为 base_address = 1000。
我们知道,**申请数组后计算机的内存管理器会给每个元素分配一个地址作为内存单元,计算机通过地址来访问内存中的数据。**当计算机需要随机访问数组中的某个元素时,它会首先通过下面的寻址公式,计算出该元素存储的内存地址:
计算要找的元素的位置:
a[i]_address = base_address + i * data_type_size。
其中 data_type_size 表示数组中每个元素的大小。我们举的这个例子里,数组中存储的是 int 类型数据,所以 data_type_size 就为 4 个字节。
3.数组和链表的区别
数组支持随机访问,根据下标随机访问的时间复杂度为 O(1)。利用二分查找时间复杂度是logn。数组的插入和删除会导致群移,时间复杂度是On,因此不适合插入和删除。
链表不支持随机访问,链表的查找从头结点开始查,时间复杂度On。插入和删除数据方便,最好时间复杂度O1,最坏时间复杂度On。
链表插入和删除最坏时间复杂度On是一种什么情况?
删除结点中“值等于某个给定值”的结点。最坏时间复杂度On。
删除给定指针指向的结点。最好时间复杂度O1
3.1 低效的“插入”和“删除”
数组为了保持内存数据的连续性,会导致插入、删除这两个操作比较低效。究竟为什么会导致低效?又有哪些改进方法呢?
01.插入操作
假设数组的长度为 n,现在,如果我们需要将一个数据插入到数组中的第 k 个位置。为了把第 k 个位置腾出来,给新来的数据,我们需要将第 k~n 这部分的元素都顺序地往后挪一位。
如果在数组的第一个位置插入On,在数组的最后一个位置插入O1。
因为我们在每个位置插入元素的概率是一样的,所以平均情况时间复杂度为 (1+2+…n)/n=O(n)。
有序&无序数组的插入应对
如果数组中的数据是有序的,我们在某个位置插入一个新的元素时,就必须按照刚才的方法搬移 k 之后的数据。
但是,如果数组中存储的数据并没有任何规律,数组只是被当作一个存储数据的集合。在这种情况下,如果要将某个数据插入到第 k 个位置,为了避免大规模的数据搬移,我们还有一个简单的办法就是,将第 k 位的数据搬移到数组元素的最后,把新的元素直接放入第 k 个位置。(快排的时候会用到)
02.删除操作
跟插入数据类似,如果我们要删除第 k 个位置的数据,为了内存的连续性,也需要搬移数据,不然中间就会出现空洞,内存就不连续了。
多个删除操作一起执行
实际上,在某些特殊场景下,我们并不一定非得追求数组中数据的连续性。如果我们将多次删除操作集中在一起执行,删除的效率是不是会提高很多呢?
我们继续来看例子。数组 a[10] 中存储了 8 个元素:a,b,c,d,e,f,g,h。现在,我们要依次删除 a,b,c 三个元素。
为了避免 d,e,f,g,h 这几个数据会被搬移三次,我们可以先记录下已经删除的数据。每次的删除操作并不是真正地搬移数据,只是记录数据已经被删除。当数组没有更多空间存储数据时,我们再触发执行一次真正的删除操作,这样就大大减少了删除操作导致的数据搬移。(JVM的垃圾回收机制。标记清除垃圾回收算法。)
磁盘文件找回也是根据这个方法的吧?磁盘空间被标记删除后只要没被覆盖就能找回,说明数据只是被标记了删除可被覆盖,而已。
4.集合(容器)能否完全替代数组?
针对数组类型,很多语言都提供了容器类,比如 Java 中的 ArrayList、C++ STL 中的 vector。在项目开发中,什么时候适合用数组,什么时候适合用容器呢?
4.1 ArrayList集合和数组比优势在那?
ArrayList 最大的优势就是可以将很多数组操作的细节封装起来。比如:数据插入、删除时需要搬移其他数据的细节都封装在了函数中。
另外,它还有一个优势,就是支持动态扩容。
4.2 数组使用时机
1.Java ArrayList 无法存储基本类型,比如 int、long,需要封装为 Integer、Long 类,而 Autoboxing、Unboxing 则有一定的性能消耗,所以如果特别关注性能,或者希望使用基本类型,就可以选用数组。
2. 如果数据大小事先已知,并且对数据的操作非常简单,用不到 ArrayList 提供的大部分方法,也可以直接使用数组。
3. 还有一个是我个人的喜好,当要表示多维数组时,用数组往往会更加直观。比如 Object[][] array;而用容器的话则需要这样定义:ArrayList array。
对于业务开发,直接使用容器就足够了,省时省力。毕竟损耗一丢丢性能,完全不会影响到系统整体的性能。但如果你是做一些非常底层的开发,比如开发网络框架,性能的优化需要做到极致,这个时候数组就会优于容器,成为首选。
5.ArrayList源码(jdk1.8)
5.1 底层数据结构
ArrayList 底层是数组实现
public ArrayList() {
this.elementData = DEFAULTCAPACITY_EMPTY_ELEMENTDATA;
}
transient Object[] elementData;
5.2 默认容量
默认容量是10
public boolean add(E e) {
//size就是当前存储的位置
//ensureCapacityInternal()设置初始容量&判断是否需要扩容
ensureCapacityInternal(size + 1); // Increments modCount!!
elementData[size++] = e;
return true;
}
private void ensureCapacityInternal(int minCapacity) {
//calculateCapacity()设置默认容量大小
//ensureExplicitCapacity()扩容&设置初始容量
ensureExplicitCapacity(calculateCapacity(elementData, minCapacity));
}
private static int calculateCapacity(Object[] elementData, int minCapacity) {
if (elementData == DEFAULTCAPACITY_EMPTY_ELEMENTDATA) {
return Math.max(DEFAULT_CAPACITY, minCapacity);
}
return minCapacity;
}
private static final int DEFAULT_CAPACITY = 10;
private void ensureExplicitCapacity(int minCapacity) {
modCount++;
// overflow-conscious code
if (minCapacity - elementData.length > 0)
grow(minCapacity);
}
最后调用Arrays.copyOf(elementData, newCapacity)设置默认容量
private void grow(int minCapacity) {
// overflow-conscious code
int oldCapacity = elementData.length;
//TODO 设置新容量,旧容量的1.5倍
int newCapacity = oldCapacity + (oldCapacity >> 1);
//TODO 设置初始容量
if (newCapacity - minCapacity < 0)
newCapacity = minCapacity;
if (newCapacity - MAX_ARRAY_SIZE > 0)
newCapacity = hugeCapacity(minCapacity);
//扩容&设置初始容量
// minCapacity is usually close to size, so this is a win:
elementData = Arrays.copyOf(elementData, newCapacity);
}
Debbug代码
public static void main(String[] args) {
List<Integer> list = new ArrayList<Integer>();
for (int i=0;i<10;i++){
list.add(i);
}
list.add(1);
}
5.3 动态扩容
当集合超过默认容量10的时候,比如:存放第 11 个数据,我们就需要重新分配一块更大的空间,将原来的数据复制过去,然后再将新的数据插入。
如果使用 ArrayList,我们就完全不需要关心底层的扩容逻辑,ArrayList 已经帮我们实现好了。每次存储空间不够的时候,它都会将空间自动扩容为 1.5 倍。底层相当于重新申请了一个数组。
*Tips
不过,这里需要注意一点,因为扩容操作涉及内存申请和数据搬移,是比较耗时的。所以,如果事先能确定需要存储的数据大小,最好在创建 ArrayList 的时候事先指定数据大小。
比如我们要从数据库中取出 10000 条数据放入 ArrayList。我们看下面这几行代码,你会发现,相比之下,事先指定数据大小可以省掉很多次内存申请和数据搬移操作(这里时间不明显是因为数据量小,数据量越大运行效率会受到影响)。
public static void main(String[] args) {
initLen();//17
noInit();//22
}
private static void noInit() {
long start = System.currentTimeMillis();
List<Integer> list = new ArrayList<Integer>();
for (int i=0;i<1000000;i++){
list.add(i);
}
long end = System.currentTimeMillis();
System.out.println(end-start);
}
private static void initLen() {
long start = System.currentTimeMillis();
List<Integer> list = new ArrayList<Integer>(1000000);
for (int i=0;i<1000000;i++){
list.add(i);
}
long end = System.currentTimeMillis();
System.out.println(end-start);
}
5.4 在指定位置加入元素
s
public void add(int index, E element) {
//检查指定的位置是否越界,越界抛出异常
rangeCheckForAdd(index);
//判断是否需要扩容
ensureCapacityInternal(size + 1); // Increments modCount!!
//index在内的所有元素后移一位
System.arraycopy(elementData, index, elementData, index + 1,
size - index);
elementData[index] = element;
size++;
}
private void rangeCheckForAdd(int index) {
if (index > size || index < 0)
throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
}
6.思考题
前面我们讲到一维数组的内存寻址公式,那你可以思考一下,类比一下,二维数组的内存寻址公式是怎样的呢?
二维数组内存寻址:
对于 m * n 的数组,a [ i ][ j ] (i < m,j < n)的地址为:
address = base_address + ( i * n + j) * type_size
7.相关练手题
70. 爬楼梯 | 509. 斐波那契数 | 9. 回文数 | 125. 验证回文串 | 283. 移动零 | 11. 盛最多水的容器 |
---|---|---|---|---|---|
1. 两数之和 | 15. 三数之和 | ||||
| | | | | |