矩阵快速幂处理一类线性递推组问题

最近两场比赛,都涉及到此类问题!以前没注意过这种问题,都在状态转移方程推出后,止步于n太大!事后总结,线性递推可以用矩阵来表示,进而快速幂解决n太大的问题!

例1:牛客小白月赛7 J 方格填色

题意:n×m矩阵填黑白两色,行相同相邻两个不能同为白色,相邻两列不全为黑色
(n≤5,m≤1e18),问填色的方案数mod 1e9+7的值.

令黑色为1,白色为0,将一列的颜色01由下往上排布,即An-1An-2……A0
(Ai为1表示该列第i+1格子为黑色,0即为白色)
也就是2进制表示,00……0~11……1,每列有2^n种可能出现的值。(状态)
(每一列的长度最长为5,即状态数最多为32,2的5次方)

设置状态
状态表示

限制条件:

相邻两列不全为黑色—>第i列为111……1,第i+1列不能为状态111……1
相邻两列的同行格不同为白色—>第i列的j位为0,第i+1列的j位不为0

相邻状态关系结论:

前面状态为x,相邻状态为y。
x、y满足 x|y = 11……1(2进制),(x=y=11……1除外)

状态转移方程:

f[x][m] 定义:第m列涂色状态为x,前面1~m列染色满足限制条件的方案数

f [ x ] [ m ] = ∑ ( 0 ≤ y ≤ 2 n − 1 , x ∣ y = 2 n − 1 , x = y ≠ 2 n − 1 ) f [ y ] [ m − 1 ] , ( 0 ≤ x ≤ 2 n − 1 ) f[x][m] = \sum_{(0\leq y \leq 2^n-1,x|y=2^n-1,x=y\neq 2^n-1)}f[y][m-1],(0\leq x \leq 2^n-1) f[x][m]=(0y2n1,xy=2n1,x=y̸=2n1)f[y][m1],(0x2n1)
举个例子: n=2时,每列有4种状态,枚举第m列的状态

1. 状 态 为 0 , f [ 0 ] [ m ] = f [ 3 ] [ m − 1 ] 1. 状态为0,f[0][m] = f[3][m-1] 1.0f[0][m]=f[3][m1] ( 第 m 列 全 为 白 色 , 不 能 同 数 位 为 0 , 第 m − 1 列 全 为 黑 色 ) (第m列全为白色,不能同数位为0,第m-1列全为黑色) (m0m1)
2. 状 态 为 1 , f [ 1 ] [ m ] = f [ 2 ] [ m − 1 ] + f [ 3 ] [ m − 1 ] 2. 状态为1,f[1][m] = f[2][m-1]+f[3][m-1] 2.1f[1][m]=f[2][m1]+f[3][m1]
( 第 m 列 第 2 格 为 白 色 , 第 m − 1 列 第 2 格 必 须 为 黑 色 , 第 1 格 可 黑 可 白 ) (第m列第2格为白色,第m-1列第2格必须为黑色,第1格可黑可白) (m2m121)
3. 状 态 为 2 , f [ 2 ] [ m ] = f [ 1 ] [ m − 1 ] + f [ 3 ] [ m − 1 ] 3. 状态为2,f[2][m] = f[1][m-1]+f[3][m-1] 3.2f[2][m]=f[1][m1]+f[3][m1]
( 第 m 列 第 1 格 为 白 色 , 第 m − 1 列 第 1 格 必 须 为 黑 色 , 第 2 格 可 黑 可 白 ) (第m列第1格为白色,第m-1列第1格必须为黑色,第2格可黑可白) (m1m112)
4. 状 态 为 3 , f [ 3 ] [ m ] = f [ 0 ] [ m − 1 ] + f [ 1 ] [ m − 1 ] + f [ 2 ] [ m − 1 ] 4. 状态为3,f[3][m] = f[0][m-1]+f[1][m-1]+f[2][m-1] 4.3f[3][m]=f[0][m1]+f[1][m1]+f[2][m1]
( 第 m 列 全 为 黑 色 , 即 只 要 第 m − 1 列 不 全 为 黑 色 即 可 ) (第m列全为黑色,即只要第m-1列不全为黑色即可) (mm1)
整理如下:
{ f [ 0 ] [ m ] = f [ 3 ] [ m − 1 ] f [ 1 ] [ m ] = f [ 2 ] [ m − 1 ] + f [ 3 ] [ m − 1 ] f [ 2 ] [ m ] = f [ 1 ] [ m − 1 ] + f [ 3 ] [ m − 1 ] f [ 3 ] [ m ] = f [ 0 ] [ m − 1 ] + f [ 1 ] [ m − 1 ] + f [ 2 ] [ m − 1 ] \begin{cases} f[0][m] &= f[3][m-1]\\ f[1][m] &= f[2][m-1]+f[3][m-1]\\ f[2][m] &= f[1][m-1]+f[3][m-1]\\ f[3][m] &= f[0][m-1]+f[1][m-1]+f[2][m-1] \end{cases} f[0][m]f[1][m]f[2][m]f[3][m]=f[3][m1]=f[2][m1]+f[3][m1]=f[1][m1]+f[3][m1]=f[0][m1]+f[1][m1]+f[2][m1]
当m不大时,可以去递推,但m超大时,必须另外想方法,因为是线性递推,而且递推状态不多,可以矩阵表示,考虑矩阵快速幂

[ f [ 0 ] [ m ] f [ 1 ] [ m ] f [ 2 ] [ m ] f [ 3 ] [ m ] ] = [ 0 0 0 1 0 0 1 1 0 1 0 1 1 1 1 0 ] ∗ [ f [ 0 ] [ m − 1 ] f [ 1 ] [ m − 1 ] f [ 2 ] [ m − 1 ] f [ 3 ] [ m − 1 ] ] \left[ \begin{matrix} f[0][m] \\ \\ f[1][m]\\ \\ f[2][m]\\ \\ f[3][m]\\ \end{matrix} \right] = \left[ \begin{matrix} 0&0&0&1\\ \\ 0&0&1&1\\ \\ 0&1&0&1\\ \\ 1&1&1&0\\ \end{matrix}\right] * \left[ \begin{matrix} f[0][m-1]\\ \\ f[1][m-1]\\ \\ f[2][m-1]\\ \\ f[3][m-1]\\ \end{matrix} \right] f[0][m]f[1][m]f[2][m]f[3][m]=0001001101011110

  • 3
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 4
    评论
### 回答1: 下面是用 C 语言实现矩阵快速幂的代码: ```c #include <stdio.h> #include <stdlib.h> #define MAXN 10 typedef struct matrix { int m[MAXN][MAXN]; } Matrix; Matrix mul(Matrix a, Matrix b, int n) { Matrix c; int i, j, k; for (i = 0; i < n; ++i) { for (j = 0; j < n; ++j) { c.m[i][j] = 0; for (k = 0; k < n; ++k) { c.m[i][j] += a.m[i][k] * b.m[k][j]; } } } return c; } Matrix pow(Matrix a, int n, int k) { Matrix res; int i, j; for (i = 0; i < n; ++i) { for (j = 0; j < n; ++j) { res.m[i][j] = (i == j) ? k : 0; } } while (n > 0) { if (n & 1) { res = mul(res, a, k); } a = mul(a, a, k); n >>= 1; } return res; } int main() { int n, k, i, j; Matrix a; printf("请输入矩阵的大小n和幂次k:"); scanf("%d%d", &n, &k); printf("请输入矩阵A:\n"); for (i = 0; i < n; ++i) { for (j = 0; j < n; ++j) { scanf("%d", &a.m[i][j]); } } Matrix res = pow(a, k, n); printf("矩阵A的%d次幂为:\n", k); for (i = 0; i < n; ++i) { for (j = 0; j < n; ++j) { printf("%d ", res.m[i][j]); } printf("\n"); } return 0; } ``` 该代码中,`Matrix` 结构体表示一个矩阵,`mul()` 函数实现了矩阵的乘法,`pow()` 函数实现了矩阵的快速幂。在 `main()` 函数中,先输入矩阵的大小和幂次,然后输入矩阵 A,最后输出 A 的 k 次幂。 ### 回答2: 矩阵快速幂是一种快速计算矩阵乘法的方法,可以在 O(log n) 的时间复杂度内计算一个矩阵的 n 次方。下面是用 C 语言编写一个矩阵快速幂的代码示例: ```c #include <stdio.h> #define N 2 // 矩阵的大小 // 矩阵乘法 void multiplyMatrix(int a[N][N], int b[N][N], int result[N][N]) { int i, j, k; int temp[N][N]; for (i = 0; i < N; i++) { for (j = 0; j < N; j++) { temp[i][j] = 0; for (k = 0; k < N; k++) { temp[i][j] += a[i][k] * b[k][j]; } } } // 将结果复制到 result 矩阵中 for (i = 0; i < N; i++) { for (j = 0; j < N; j++) { result[i][j] = temp[i][j]; } } } // 矩阵快速幂 void matrixPower(int base[N][N], int exponent, int result[N][N]) { int i; int temp[N][N]; // 初始化结果矩阵为单位矩阵 for (i = 0; i < N; i++) { for (int j = 0; j < N; j++) { if (i == j) { result[i][j] = 1; } else { result[i][j] = 0; } } } while (exponent > 0) { if (exponent % 2 == 1) { multiplyMatrix(result, base, temp); // 将结果复制到 result 矩阵中 for (i = 0; i < N; i++) { for (int j = 0; j < N; j++) { result[i][j] = temp[i][j]; } } } multiplyMatrix(base, base, temp); // 将结果复制到 base 矩阵中 for (i = 0; i < N; i++) { for (int j = 0; j < N; j++) { base[i][j] = temp[i][j]; } } exponent /= 2; } } // 打印矩阵 void printMatrix(int matrix[N][N]) { int i, j; for (i = 0; i < N; i++) { for (j = 0; j < N; j++) { printf("%d ", matrix[i][j]); } printf("\n"); } } int main() { int base[N][N] = {{1, 1}, {1, 0}}; int exponent = 5; int result[N][N]; matrixPower(base, exponent, result); printMatrix(result); return 0; } ``` 以上代码演示了如何使用 C 语言编写一个矩阵快速幂的程序。程序中先定义了一个矩阵乘法函数 `multiplyMatrix`,用于计算两个矩阵相乘的结果。然后实现了矩阵快速幂函数 `matrixPower`,用于计算一个矩阵的指数次方。最后在 `main` 函数中使用示例矩阵和指数调用 `matrixPower` 函数,并通过 `printMatrix` 函数打印结果。 ### 回答3: 矩阵快速幂是指将一个矩阵求幂的运算使用快速幂算法进行优化,以提高计算的效率。下面是用C语言编写的一个矩阵快速幂算法的示例代码: ```c #include <stdio.h> // 定义矩阵的最大维度 #define MAX_SIZE 10 // 矩阵相乘函数 void matrix_multiply(int n, int a[][MAX_SIZE], int b[][MAX_SIZE], int c[][MAX_SIZE]) { int i, j, k; for(i=0; i<n; i++) { for(j=0; j<n; j++) { c[i][j] = 0; for(k=0; k<n; k++) { c[i][j] += a[i][k] * b[k][j]; } } } } // 矩阵快速幂函数 void matrix_power(int n, int a[][MAX_SIZE], int m, int b[][MAX_SIZE]) { int i, j; // 初始化结果矩阵为单位矩阵 for(i=0; i<n; i++) { for(j=0; j<n; j++) { if(i == j) { b[i][j] = 1; } else { b[i][j] = 0; } } } // 进行快速幂运算 while(m > 0) { if(m % 2 == 1) { int c[MAX_SIZE][MAX_SIZE]; matrix_multiply(n, b, a, c); for(i=0; i<n; i++) { for(j=0; j<n; j++) { b[i][j] = c[i][j]; } } } int c[MAX_SIZE][MAX_SIZE]; matrix_multiply(n, a, a, c); for(i=0; i<n; i++) { for(j=0; j<n; j++) { a[i][j] = c[i][j]; } } m = m / 2; } } int main() { int n = 3; // 矩阵维度 int a[MAX_SIZE][MAX_SIZE] = {{1, 2, 3}, {4, 5, 6}, {7, 8, 9}}; // 输入矩阵 int m = 3; // 幂指数 int b[MAX_SIZE][MAX_SIZE]; // 结果矩阵 matrix_power(n, a, m, b); // 输出结果矩阵 int i, j; for(i=0; i<n; i++) { for(j=0; j<n; j++) { printf("%d ", b[i][j]); } printf("\n"); } return 0; } ``` 以上代码实现了一个矩阵快速幂算法,其中`matrix_multiply`函数用于计算两个矩阵的乘积,`matrix_power`函数用于进行矩阵的快速幂运算。在`main`函数中,我们可以自定义输入矩阵维度、矩阵内容以及幂指数,并输出矩阵求幂的结果。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值