动态规划概述

动态规划

通过把原问题分解为相对简单的子问题的方式求解复杂问题的方法。动态规划常常适用于有重叠子问题和最优子结构性质的问题

基本思想

若要求解一个给定问题,则需解出其相对简单的子问题,再合并这些子问题的解得出原问题的解
动态规划的思想在于,如果各个子问题不是独立的,不同的子问题的个数只是多项式量级,如果我们能够保存已经解决的子问题的答案,而在需要的时候再找出已求得的答案,这样就可以避免大量的重复计算
由此得到的思路就是,用一个表记录所有已解决的子问题的答案,不管该问题以后是否被用到,只要它被计算过,就将其结果填入表中

问题特征

最优子结构:当问题的最优解包含了其子问题的最优解时,称该问题具有最优子结构性质。

重叠子问题:在用递归算法自顶向下解问题时,每次产生的子问题并不总是新问题,有些子问题被反复计算多次。动态规划算法正是利用了这种子问题的重叠性质,对每一个子问题只解一次,而后将其解保存在一个表格中,在以后尽可能多地利用这些子问题的解。

一般求解步骤

(1) 找出最优解的性质,并刻画其结构特征
(2) 递归地定义最优值
(3) 以自底向上的方式计算出最优值
(4) 根据计算最优值时得到的信息,构造一个最优解

典型例题

01背包问题

问题描述:有N件物品和容量为C的背包。第i件物品的重量是w[i],价值是v[i]
问:应如何选择装入背包的物品才能使背包内物品的总价值最大?

简单分析一下,每种物品我们只能选择拿与不拿,不能选择装入物品的某一部分,即将其切割,亦不能装入同一件物品多次

将第i件物品放入容量为C的背包中“这个子问题,若只考虑第i件物品(放与不放),那么就可以转换成关联前i-1件物品的问题

不妨设f[i][j]这样一个二维数组,表示将第i件物品放入容量为j的背包中所能得到的物品最大总价值,那么由此很容易得出f[i][j]的算法:

  • 由我们上述分析,第i件物品只有放与不放两种情形,当然也要考虑背包容量能否容纳:
  • (1)j < w[i],即此时背包容量不足以放下第i件物品,则自然选择不拿:
f[i][j] = f[i-1][j];
  • (2)j >= w[i],此时背包容量能够放下第i件物品,则就要考虑放下该第i件物品能否使背包中物品总价值增大,由此可得:
f[i][j] = max(f[i-1][j], f[i-1][j - w[i]] + v[i]);

f[i-1][j - w[i]] + v[i],为何得出这个式子呢?是这样的,背包总容量为j,此时我们要将第i件物品放入背包中,所以我们要为第i件物品腾出空间,即得到j - w[i],而f[i-1][j - w[i]]即为此时所得到的最大价值,再放入第i件物品,即加上v[i]

由上述可得状态转移方程:

if (j < w[i])
	f[i][j] = f[i-1][j];
else
	f[i][j] = max(f[i-1][j], f[i-1][j-w[i]] + v[i]);

完整代码如下:

#include <iostream>
#include <cstring>
#include <cstdio>
using namespace std;

#define N  1000
#define V  1000
int f[N][V];   //最大总价值 
int v[N];      //单个物品的价值 
int w[N];      //单个物品的重量 
int main(int argc, char *argv[])
{
   	int n,c;
   	//初始化 
   	memset(f, 0, sizeof(f));
   	memset(w, 0, sizeof(w));
   	memset(v, 0, sizeof(v));
   	cin >> n >> c;
   	//输入价值与重量 
   	for (int i = 1; i <= n; ++i)
	   	cin >> v[i];
   	for (int i = 1; i <= n; ++i)
   		cin >> w[i];
   	//得到最大价值 
	for (int i = 1; i <= n; ++i)
	{
		for (int j = 1; j <= c; ++j)
		{
			if (j < w[i])
				f[i][j] = f[i-1][j];
			else
				f[i][j] = max(f[i-1][j], f[i-1][j-w[i]] + v[i]);
		}
	}
	//填表 
	for (int i = 1; i <= n; ++i)
	{
		for (int j = 1; j <= c; ++j)
		{
			cout << f[i][j] << "  ";
		}
		cout << endl;
	}
	//最大价值 
	cout << f[n][c] << endl;
    return 0;
}
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值