【蓝桥杯】算法训练 集合运算

问题描述
  给出两个整数集合 A 、 B A、B AB,求出他们的交集、并集以及 B B B A A A中的余集。
输入格式
  第一行为一个整数 n n n,表示集合 A A A中的元素个数。
  第二行有 n n n个互不相同的用空格隔开的整数,表示集合 A A A中的元素。
  第三行为一个整数 m m m,表示集合 B B B中的元素个数。
  第四行有 m m m个互不相同的用空格隔开的整数,表示集合 B B B中的元素。
  集合中的所有元素均为 i n t int int范围内的整数, n 、 m &lt; = 1000 n、m&lt;=1000 nm<=1000
输出格式
  第一行按从小到大的顺序输出 A 、 B A、B AB交集中的所有元素。
  第二行按从小到大的顺序输出 A 、 B A、B AB并集中的所有元素。
  第三行按从小到大的顺序输出 B B B A A A中的余集中的所有元素。
样例输入
5
1 2 3 4 5
5
2 4 6 8 10
样例输出
2 4
1 2 3 4 5 6 8 10
1 3 5
样例输入
4
1 2 3 4
3
5 6 7
样例输出
1 2 3 4 5 6 7
1 2 3 4

个人思路:首先对两个数组排序;然后直接同时遍历两个数组,比较两个数组中元素值大小,做出不同的处理;如果某个数组有剩余,需要单独处理;余集则利用前面比较元素值中相等情况做的标记进行排除

#include <iostream>
#include <algorithm>
using namespace std;
int n, m;
int a[1005], b[1005];
int ans1[1005], ans2[2005];
bool vis[1005];
int main() {
	cin >> n; 
	for (int i = 0; i < n; ++i) {
		cin >> a[i];
	}
	cin >> m;
	for (int j = 0; j < m; ++j) {
		cin >> b[j];
	}
	sort(a, a + n);
	sort(b, b + m);
	int k = 0, h = 0;
	int i = 0, j = 0;
	while (k < n && h < m) {
		//将小元素放入ans2,作为并集
		if (a[k] < b[h])
		{
			ans2[j] = a[k];
			k++;
			j++;
		}
		if (a[k] > b[h]) {
			ans2[j] = b[h];
			h++;
			j++;
		}
		//相等则放入交集、并集,并标记a数组中的元素
		if (a[k] == b[h]) {
			ans1[i] = a[k];
			ans2[j] = a[k];
			i++;
			j++;
			vis[k] = true;
			k++;
			h++;
		}
	}
	//b数组有剩余
	if (k == n && h < m) {
		for (int x = h; x < m; ++x) {
			ans2[j] = b[x];
			++j;
		}
	}
	//a数组有剩余
	if (k < n && h == m) {
		for (int x = k; x < n; ++x) {
			ans2[j] = a[x];
			++j;
		}
	}
	//需要判断一下i是否大于0,如果小于0则说明无交集
	if (i > 0) {
		for (int x = 0; x < i; ++x) {
			cout << ans1[x] << " ";
		}
		cout << endl;	
	}
	//需要判断一下j是否大于0,如果小于0则说明无并集
	if (j > 0) {
		for (int x = 0; x < j; ++x) {
			cout << ans2[x] << " ";
		}
		cout << endl;
	}
	//排除相等元素
	for (int x = 0; x < n; ++x) {
		if (!vis[x])
			cout << a[x] << " ";
	}
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值