MQ--消息中间件

1.MQ概况

        消息队列具有低耦合、可靠投递、广播、流量控制、最终一致性等一系列功能,成为异步RPC的主要手段之一。当今市面上有很多主流的消息中间件,如老牌的ActiveMQ、RabbitMQ,炙手可热的Kafka,阿里巴巴自主开发RocketMQ等。

2.MQ消息中间件的组成

      2.1 Broker

      消息服务器,作为server提供消息核心服务

      2.2 Producer

      消息生产者,业务的发起方,负责生产消息传输给broker,

      2.3 Consumer

      消息消费者,业务的处理方,负责从broker获取消息并进行业务逻辑处理

      2.4 Topic

     主题,发布订阅模式下的消息统一汇集地,不同生产者向topic发送消息,由MQ服务器分发到不同的订阅者,实现消息的       广播

      2.5 Queue

      队列,PTP模式下,特定生产者向特定queue发送消息,消费者订阅特定的queue完成指定消息的接收

      2.6 Message

      消息体,根据不同通信协议定义的固定格式进行编码的数据包,来封装业务数据,实现消息的传输

3.消息中间件模式分类

      3.1 点对点

     PTP点对点:使用queue作为通信载体 

说明: 
消息生产者生产消息发送到queue中,然后消息消费者从queue中取出并且消费消息。 
消息被消费以后,queue中不再存储,所以消息消费者不可能消费到已经被消费的消息。 Queue支持存在多个消费者,但是对一个消息而言,只会有一个消费者可以消费。

    3.2 发布/订阅

    Pub/Sub发布订阅(广播):使用topic作为通信载体 

说明: 
消息生产者(发布)将消息发布到topic中,同时有多个消息消费者(订阅)消费该消息。和点对点方式不同,发布到topic的消息会被所有订阅者消费。

queue实现了负载均衡,将producer生产的消息发送到消息队列中,由多个消费者消费。但一个消息只能被一个消费者接受,当没有消费者可用时,这个消息会被保存直到有一个可用的消费者。 
topic实现了发布和订阅,当你发布一个消息,所有订阅这个topic的服务都能得到这个消息,所以从1到N个订阅者都能得到一个消息的拷贝。

4.为什么要使用MQ?

其实使用MQ的场景有挺多的,但是比较核心的有3个:

异步、解耦、削峰填谷

异步

我们通过实际案例说明:假设A系统接收一个请求,需要在自己本地写库执行SQL,然后需要调用BCD三个系统的接口。

假设自己本地写库要3ms,调用BCD三个系统分别要300ms、450ms、200ms。

那么最终请求总延时是3 + 300 + 450 + 200 = 953ms,接近1s,可能用户会感觉太慢了。

此时整个系统大概是这样的:

但是一旦使用了MQ之后,系统A只需要发送3条消息到MQ中的3个消息队列,然后就返回给用户了

假设发送消息到MQ中耗时20ms,那么用户感知到这个接口的耗时仅仅是20 + 3 = 23ms,用户几乎无感知,倍儿爽!

此时整个系统结构大概是这样的:

 

可以看到,通过MQ的异步功能,可以大大提高接口的性能

解耦

假设A系统在用户发生某个操作的时候,需要把用户提交的数据同时推送到B、C两个系统的时候。

这个时候负责A系统的哥们想:没事啊,B、C两个系统给我提供一个Http接口或者RPC接口,我把数据推送过去不就完事了吗。负责A系统的哥们美滋滋。

如下图所示:

 

一切看起来很美好,但是随着业务快速迭代,这个时候系统D也想要这个数据。那既然这样,A系统的开发同学就改咯,在发送数据给BC的同时加上一个D。

但是,越到后面越发现,麻烦来了。。。

整个系统好像不止这个数据要发送给BCD、还有第二、第三个数据要发送给BCD。甚至有时候又加入了E、F等等系统,他们也要这个数据。

并且有时候可能B系统突然又不要这个数据了,A系统该来改去,A系统的开发哥们头皮发麻。

更复杂的场景是,数据通过接口传给其他系统有时候还要考虑重试、超时等一些异常情况,真是头发都白了呀。。。

来看下图,体会一下这无助的现场:

这个时候,就该我们的MQ粉墨登场了!

这种情况下使用MQ来解耦是在合适不过了,因为负责A系统的哥们只需要把消息扔到MQ就行了,其他系统按需来订阅消息就好了。

就算某个系统不需要这个数据了,也不会需要A系统改动代码。

看看加入MQ解耦的下图,是不是清爽了很多!

削峰填谷

举个例子,比如我们的订单系统,在下单的时候就会往数据库写数据。但是数据库只能支撑每秒1000左右的并发写入,并发量再高就容易宕机。

低峰期的时候并发也就100多个,但是在高峰期时候,并发量会突然激增到5000以上,这个时候数据库肯定死了。

如下图,来感受一下数据库被打死的绝望:

但是使用了MQ之后,情况就变了!

消息被MQ保存起来了,然后系统就可以按照自己的消费能力来消费,比如每秒1000个数据,这样慢慢写入数据库,这样就不会打死数据库了:

整个过程,如下图所示:

至于为什么叫做削峰填谷呢?来看看这个图:

如果没有用MQ的情况下,并发量高峰期的时候是有一个“顶峰”的,然后高峰期过后又是一个低并发的“”。

但是使用了MQ之后,限制消费消息的速度为1000,但是这样一来,高峰期产生的数据势必会被积压在MQ中,高峰就被“削”掉了。

但是因为消息积压,在高峰期过后的一段时间内,消费消息的速度还是会维持在1000QPS,直到消费完积压的消息,这就叫做“填谷”

通过上面的分析,大家就可以知道为什么要使用MQ,以及使用了MQ有什么好处。知其所以然,明白了自己的系统为什么要使用MQ。

5.使用了MQ之后有什么优缺点?

优点上面已经说了,接下来我们就讨论一下,用MQ会有什么缺点把?

系统可用性降低

上面的说解耦的场景,本来A系统的哥们要把系统关键数据发送给BC系统的,现在突然加入了一个MQ了,现在BC系统接收数据要通过MQ来接收。

但是大家有没有考虑过一个问题,万一MQ挂了怎么办?这就引出一个问题,加入了MQ之后,系统的可用性是不是就降低了?

因为多了一个风险因素:MQ可能会挂掉。只要MQ挂了,数据没了,系统运行就不对了。

系统复杂度提高

本来我的系统通过接口调用一下就能完事的,但是加入一个MQ之后,需要考虑消息重复消费、消息丢失、甚至消息顺序性的问题

为了解决这些问题,又需要引入很多复杂的机制,这样一来是不是系统的复杂度提高了。

数据一致性问题

本来好好的,A系统调用BC系统接口,如果BC系统出错了,会抛出异常,返回给A系统让A系统知道,这样的话就可以做回滚操作了

但是使用了MQ之后,A系统发送完消息就完事了,认为成功了。而刚好C系统写数据库的时候失败了,但是A认为C已经成功了?这样一来数据就不一致了。

通过分析引入MQ的优缺点之后,就明白了使用MQ有很多优点,但是会发现它带来的缺点又会需要你做各种额外的系统设计来弥补

最后你可能会发现整个系统复杂了好几倍,所以设计系统的时候要基于这些考虑做出取舍,很多时候你会发现该用的还是要用的。

6.怎么保证MQ消息不丢失?

使用了MQ之后,还要关心消息丢失的问题。这里我们挑RabbitMQ来说明一下吧。

生产者弄丢了数据

RabbitMQ生产者将数据发送到rabbitmq的时候,可能数据在网络传输中搞丢了,这个时候RabbitMQ收不到消息,消息就丢了。

RabbitMQ提供了两种方式来解决这个问题:

事务方式:

在生产者发送消息之前,通过`channel.txSelect`开启一个事务,接着发送消息

如果消息没有成功被RabbitMQ接收到,生产者会收到异常,此时就可以进行事务回滚`channel.txRollback`然后重新发送。假如RabbitMQ收到了这个消息,就可以提交事务`channel.txCommit`。

但是这样一来,生产者的吞吐量和性能都会降低很多,现在一般不这么干。

通过confirm机制:

这个confirm模式是在生产者哪里设置的,就是每次写消息的时候会分配一个唯一的id,然后RabbitMQ收到之后会回传一个ack,告诉生产者这个消息ok了。

如果rabbitmq没有处理到这个消息,那么就回调一个nack的接口,这个时候生产者就可以重发。

事务机制和cnofirm机制最大的不同在于事务机制是同步的,提交一个事务之后会阻塞在那儿,但是confirm机制是异步的,发送一个消息之后就可以发送下一个消息,然后那个消息rabbitmq接收了之后会异步回调你一个接口通知你这个消息接收到了。

所以一般在生产者这块避免数据丢失,都是用confirm机制的

Rabbitmq弄丢了数据

RabbitMQ集群也会弄丢消息,这个问题在官方文档的教程中也提到过,就是说在消息发送到RabbitMQ之后,默认是没有落地磁盘的,万一RabbitMQ宕机了,这个时候消息就丢失了。

所以为了解决这个问题,RabbitMQ提供了一个持久化的机制,消息写入之后会持久化到磁盘

这样哪怕是宕机了,恢复之后也会自动恢复之前存储的数据,这样的机制可以确保消息不会丢失。

设置持久化有两个步骤:

  • 第一个是创建queue的时候将其设置为持久化的,这样就可以保证rabbitmq持久化queue的元数据,但是不会持久化queue里的数据

  • 第二个是发送消息的时候将消息的deliveryMode设置为2,就是将消息设置为持久化的,此时rabbitmq就会将消息持久化到磁盘上去。

但是这样一来可能会有人说:万一消息发送到RabbitMQ之后,还没来得及持久化到磁盘就挂掉了,数据也丢失了,怎么办?

对于这个问题,其实是配合上面的confirm机制一起来保证的,就是在消息持久化到磁盘之后才会给生产者发送ack消息。

万一真的遇到了那种极端的情况,生产者是可以感知到的,此时生产者可以通过重试发送消息给别的RabbitMQ节点

消费端弄丢了数据

RabbitMQ消费端弄丢了数据的情况是这样的:在消费消息的时候,刚拿到消息,结果进程挂了,这个时候RabbitMQ就会认为你已经消费成功了,这条数据就丢了。

对于这个问题,要先说明一下RabbitMQ消费消息的机制:在消费者收到消息的时候,会发送一个ack给RabbitMQ,告诉RabbitMQ这条消息被消费到了,这样RabbitMQ就会把消息删除。

但是默认情况下这个发送ack的操作是自动提交的,也就是说消费者一收到这个消息就会自动返回ack给RabbitMQ,所以会出现丢消息的问题。

所以针对这个问题的解决方案就是:关闭RabbitMQ消费者的自动提交ack,在消费者处理完这条消息之后再手动提交ack。

这样即使遇到了上面的情况,RabbitMQ也不会把这条消息删除,会在你程序重启之后,重新下发这条消息过来。

7.怎么保证MQ的高可用性性?

使用了MQ之后,我们肯定是希望MQ有高可用特性,因为不可能接受机器宕机了,就无法收发消息的情况。

这一块我们也是基于RabbitMQ这种经典的MQ来说明一下:

RabbitMQ是比较有代表性的,因为是基于主从做高可用性的,我们就以他为例子讲解第一种MQ的高可用性怎么实现。

rabbitmq有三种模式:单机模式,普通集群模式,镜像集群模式

单机模式

单机模式就是demo级别的,就是说只有一台机器部署了一个RabbitMQ程序

这个会存在单点问题,宕机就玩完了,没什么高可用性可言。一般就是你本地启动了玩玩儿的,没人生产用单机模式。

普通集群模式

这个模式的意思就是在多台机器上启动多个rabbitmq实例。类似的master-slave模式一样。

但是创建的queue,只会放在一个master rabbtimq实例上,其他实例都同步那个接收消息的RabbitMQ元数据。

在消费消息的时候,如果你连接到的RabbitMQ实例不是存放Queue数据的实例,这个时候RabbitMQ就会从存放Queue数据的实例上拉去数据,然后返回给客户端。

总的来说,这种方式有点麻烦,没有做到真正的分布式,每次消费者连接一个实例后拉取数据,如果连接到不是存放queue数据的实例,这个时候会造成额外的性能开销。如果从放Queue的实例拉取,会导致单实例性能瓶颈。

如果放queue的实例宕机了,会导致其他实例无法拉取数据,这个集群都无法消费消息了,没有做到真正的高可用。

所以这个事儿就比较尴尬了,这就没有什么所谓的高可用性可言了,这方案主要是提高吞吐量的,就是说让集群中多个节点来服务某个queue的读写操作

镜像集群模式

镜像集群模式才是真正的rabbitmq的高可用模式,跟普通集群模式不一样的是:创建的queue无论元数据还是queue里的消息都会存在于多个实例上,每次写消息到queue的时候,都会自动把消息到多个实例的queue里进行消息同步。这样的话任何一个机器宕机了别的实例都可以用提供服务,这样就做到了真正的高可用了。

但是也存在着不好之处

  • 性能开销过高,消息需要同步所有机器,会导致网络带宽压力和消耗很重

  • 扩展性低:无法解决某个queue数据量特别大的情况,导致queue无法线性拓展。

就算加了机器,那个机器也会包含queue的所有数据,queue的数据没有做到分布式存储。

对于RabbitMQ的高可用一般的做法都是开启镜像集群模式,这样起码来说做到了高可用,一个节点宕机了,其他节点可以继续提供服务。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值