题目:数位和相等数对的最大和
给你一个下标从 0 开始的数组 nums
,数组中的元素都是 正 整数。请你选出两个下标 i
和 j
(i != j
),且 nums[i]
的数位和 与 nums[j]
的数位和相等。
请你找出所有满足条件的下标 i
和 j
,找出并返回 nums[i] + nums[j]
可以得到的 最大值。如果不存在这样的下标对,返回 -1。
示例 1:
输入:nums = [18,43,36,13,7] 输出:54 解释:满足条件的数对 (i, j) 为: - (0, 2) ,两个数字的数位和都是 9 ,相加得到 18 + 36 = 54 。 - (1, 4) ,两个数字的数位和都是 7 ,相加得到 43 + 7 = 50 。 所以可以获得的最大和是 54 。
示例 2:
输入:nums = [10,12,19,14] 输出:-1 解释:不存在满足条件的数对,返回 -1 。
提示:
1 <= nums.length <= 105
1 <= nums[i] <= 109
参考答案:
下面这个解法超时了:
class Solution:
def maximumSum(self, nums: List[int]) -> int:
# 数位和:一个数字中所有数位的和,如12 = 1+2 = 3
ans = -1
idx = defaultdict(list)
for j,n in enumerate(nums):
cnt = 0
for x in str(n):
cnt += int(x)
if cnt in idx:
for index in idx[cnt]:
ans = max(ans,n + nums[index])
idx[cnt].append(j)
return ans
事实上我们根本不需要把数位和相同的每个元素的索引都记下来, 因为我们只需要知道j之前的相同数位和元素的最大值。
并且数位和的求法不用字符串效率更高。
class Solution:
def maximumSum(self, nums: List[int]) -> int:
# 数位和:一个数字中所有数位的和,如12 = 1+2 = 3
ans = -1
maxx = defaultdict(int)
for j,n in enumerate(nums):
cnt = 0
s = n
while s:
cnt += s % 10
s //= 10
if cnt in maxx:
ans = max(ans,n + maxx[cnt])
maxx[cnt] = max(maxx[cnt],n)
return ans