常用数据结构(枚举):练习题目21

题目:直角三角形

给你一个二维 boolean 矩阵 grid 。

如果 grid 的 3 个元素的集合中,一个元素与另一个元素在 同一行,并且与第三个元素在 同一列,则该集合是一个 直角三角形。3 个元素 不必 彼此相邻。

请你返回使用 grid 中的 3 个元素可以构建的 直角三角形 数目,且满足 3 个元素值  为 1 。

示例 1:

010
011
010
010
011
010

输入:grid = [[0,1,0],[0,1,1],[0,1,0]]

输出:2

解释:有 2 个值为 1 的直角三角形。注意蓝色的那个 没有 组成直角三角形,因为 3 个元素在同一列。

示例 2:

1000
0101
1000

输入:grid = [[1,0,0,0],[0,1,0,1],[1,0,0,0]]

输出:0

解释:没有值为 1 的直角三角形。注意蓝色的那个 没有 组成直角三角形。

示例 3:

101
100
100
101
100
100

输入:grid = [[1,0,1],[1,0,0],[1,0,0]]

输出:2

解释:有两个值为 1 的直角三角形。

提示:

  • 1 <= grid.length <= 1000
  • 1 <= grid[i].length <= 1000
  • 0 <= grid[i][j] <= 1

参考答案:

class Solution:
    def numberOfRightTriangles(self, grid: List[List[int]]) -> int:
        # 先求出每一行行和以及每一列列和
        ans = 0
        rowlen = len(grid)
        collen = len(grid[0])
        colsum = [0] * collen
        rowsum = [0] * rowlen
        for j,n in enumerate(grid):
            for i in range(collen):
                colsum[i] += n[i]
            rowsum[j] = sum(n)
        # 下面遍历所有数字,求每个元素能组成的直角三角形个数
        for i,n in enumerate(grid):
            for j in range(collen):
                if n[j] == 1:
                    ans += (colsum[j] - 1) * (rowsum[i] - 1)
        return ans

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值