题目:直角三角形
给你一个二维 boolean 矩阵 grid
。
如果 grid
的 3 个元素的集合中,一个元素与另一个元素在 同一行,并且与第三个元素在 同一列,则该集合是一个 直角三角形。3 个元素 不必 彼此相邻。
请你返回使用 grid
中的 3 个元素可以构建的 直角三角形 数目,且满足 3 个元素值 都 为 1 。
示例 1:
0 | 1 | 0 |
0 | 1 | 1 |
0 | 1 | 0 |
0 | 1 | 0 |
0 | 1 | 1 |
0 | 1 | 0 |
输入:grid = [[0,1,0],[0,1,1],[0,1,0]]
输出:2
解释:有 2 个值为 1 的直角三角形。注意蓝色的那个 没有 组成直角三角形,因为 3 个元素在同一列。
示例 2:
1 | 0 | 0 | 0 |
0 | 1 | 0 | 1 |
1 | 0 | 0 | 0 |
输入:grid = [[1,0,0,0],[0,1,0,1],[1,0,0,0]]
输出:0
解释:没有值为 1 的直角三角形。注意蓝色的那个 没有 组成直角三角形。
示例 3:
1 | 0 | 1 |
1 | 0 | 0 |
1 | 0 | 0 |
1 | 0 | 1 |
1 | 0 | 0 |
1 | 0 | 0 |
输入:grid = [[1,0,1],[1,0,0],[1,0,0]]
输出:2
解释:有两个值为 1 的直角三角形。
提示:
1 <= grid.length <= 1000
1 <= grid[i].length <= 1000
0 <= grid[i][j] <= 1
参考答案:
class Solution:
def numberOfRightTriangles(self, grid: List[List[int]]) -> int:
# 先求出每一行行和以及每一列列和
ans = 0
rowlen = len(grid)
collen = len(grid[0])
colsum = [0] * collen
rowsum = [0] * rowlen
for j,n in enumerate(grid):
for i in range(collen):
colsum[i] += n[i]
rowsum[j] = sum(n)
# 下面遍历所有数字,求每个元素能组成的直角三角形个数
for i,n in enumerate(grid):
for j in range(collen):
if n[j] == 1:
ans += (colsum[j] - 1) * (rowsum[i] - 1)
return ans