递归创建二叉树

通常对于二叉树的创建采用两种方式:递归创建和非递归创建。本文在这里采用递归方法创建二叉树,并且叙述有关二叉树三种遍历方式以及求有关节点的相关问题等。

首先定义一个有关二叉树的结构体,结构体中包含整型的data,以及结构体类型的左右子树left和right。然后是创建有关二叉树的结点,相关代码如下:

typedef int  DataType;

typedef struct  BSTreeNode{
	DataType data;
	struct BSTreeNode *left;
	struct BSTreeNode *right;
} BSTreeNode;

BSTreeNode *CreateNode(int data)
{
	BSTreeNode *node = (BSTreeNode *)malloc(sizeof(BSTreeNode));
	node->data = data;
	node->left = NULL;
	node->right = NULL;
	return node;
}

           对于创建二叉树,我采用了先序遍历的方法递归创建二叉树,下图是我的构思(用#号代表空结点):

             下面代码中使用-1替换了上图中的#号来表示空结点,这里使用 preOrder来存储结点元素,然后定义了一个整形指针pUsedSize来标记在创建二叉树过程中已经使用过的元素个数,代码如下:

//创建出树的根节点
//创建过程中,使用的字符个数
BSTreeNode *CreateTree(int preOrder[], int size, int *pUsedSize)
{
	if (size <= 0)
	{
		*pUsedSize = 0;
		return NULL;
	}
	int leftUse, rightUse;
	int rootValue = preOrder[0];
	if (rootValue == -1)
	{
		*pUsedSize = 1;
		return NULL;
	}
	BSTreeNode *root = CreateNode(rootValue);
	root->left = CreateTree(preOrder + 1, size - 1, &leftUse);
	root->right = CreateTree(preOrder + 1 + leftUse, size - 1 - leftUse, &rightUse);

	//向老大报告实际使用情况
	*pUsedSize = 1 + leftUse + rightUse;
	return root;
}

               完成创建二叉树的代码后,我又续写了相关代码来测试,测试代码如下:

void test()
{
	int preOrder[] = { 1, 2, 4, -1,-1,-1,3 };
	int size = sizeof(preOrder) / sizeof(int);
	int usedSize;
	BSTreeNode *root = CreateTree(preOrder, size, &usedSize);
	
}

int main()
{
	test();
	system("pause");
	return 0;
}

                测试结果如下:

              接下来,我采用前序,中序,后序三种遍历方法遍历了我所创建的二叉树,相关代码如下:

//前序遍历
void Preorder(BSTreeNode *root)
{
	// 终止条件
	if (root == NULL) {
		return;
	}

	// 根
	printf("%d ", root->data);
	// 左子树,子问题用递归处理
	Preorder(root->left);
	// 右子树,子问题用递归处理
	Preorder(root->right);
}

//中序遍历

void InOrder(BSTreeNode *root)
{
	if (root == NULL)
	{
		return;
	}
	InOrder(root->left);
	printf("%d ", root->data);
	InOrder(root->right);
}

//后序遍历
void PostOrder(BSTreeNode *root)
{
	// 终止条件
	if (root == NULL) {
		return;
	}

	// 左子树,子问题用递归处理
	PostOrder(root->left);
	// 右子树,子问题用递归处理
	PostOrder(root->right);
	// 根
	printf("%d ", root->data);
}

              三种遍历结果如下:

             完成二叉树的创建和遍历,然后来我会叙述一些有关二叉树的其它一些问题。通常我们会遇到求有关二叉树的节点个数,叶子结点个数,二叉树高度等相关问题。下面对于这些有关二叉树的问题我将一 一叙述:

             1.求二叉树的节点个数问题,这里采用后序遍历二叉树,定义一个全局整形变量count来统计节点个数,代码如下:

//求树的结点的个数
int count = 0;
int  GetSize1(BSTreeNode *root)
{
		if (root == NULL) {
			return 0;
		}

		GetSize1(root->left);
		GetSize1(root->right);
		count++;
		return  count;
}

             2.求有关二叉树叶子节点个数的问题,代码如下:

//求叶子节点个数
int GeatLeafSize(BSTreeNode *root)
{
	if (root == NULL)
	{
		return 0;
	}
	else{
		if (root->left == NULL&&root->right == NULL)
		{
			return 1;
		}
		else
		{
			return GeatLeafSize(root->left) +  GeatLeafSize(root->right);
		}
	}
}

              3.求二叉树第k层节点个数的问题,代码如下:

//求第K层节点个数
int GetLevelkSize(BSTreeNode *root, int k)
{
	assert(k >= 1);
	if (root == NULL)
	{
		//空树,任意层都是0个
		return  0;
	}
	if (k ==1)
	{//第一层只有一个根节点
		return 1;
	}
	int left = GetLevelkSize(root->left, k - 1);
	int right = GetLevelkSize(root->right, k - 1);

	return  left + right;
}

                4.求二叉树高度的问题,代码如下:

//求树的高度
#define  MAX(a ,b)  ((a)>(b)? (a):(b))

int GetHeight(BSTreeNode *root)
{
	if (root == NULL)
	{
		return 0;
	}
	//当子树有一个节点的时候,可以写,也可以不写
	//写的话,节省两次函数调用
	return MAX(GetHeight(root->left), GetHeight(root->right)) + 1;
}

                5.在二叉树中查找一个元素的问题,若找到返回其结点地址,否则返回NULL。代码如下:

//查找元素
BSTreeNode *Find(BSTreeNode *root, DataType data)
{
	if (root == NULL)
	{
		return NULL;
	}
	if (root->data == data)
	{
		return root;
	}
	BSTreeNode *result = Find(root->left, data);
	if (result != NULL)
	{
		return result;
	}
     result = Find(root->right, data);
	if (result != NULL)
	{
		return result;
	}
	else
	{
		return NULL;
	}
}

 

好的,我可以为您讲解递归建立二叉树的方法。首先,我们需要定义二叉树的数据结构,包含一个根节点和左右子树。然后,我们可以通过递归的方式建立二叉树。 具体的方法是,我们首先读入根节点的值,然后判断左子树和右子树是否为空。如果不为空,我们就递归调用建立左右子树的操作。递归建立左子树的过程是将读入的下一个值作为左子树的根节点值,然后递归调用建立左子树的操作。递归建立右子树也是类似的过程。 下面是一个示例代码,用于递归建立二叉树: ```c++ #include <iostream> using namespace std; struct TreeNode { int val; TreeNode* left; TreeNode* right; TreeNode(int x) : val(x), left(NULL), right(NULL) {} }; TreeNode* buildTree() { int val; cin >> val; if (val == -1) { return NULL; } TreeNode* root = new TreeNode(val); root->left = buildTree(); root->right = buildTree(); return root; } int main() { TreeNode* root = buildTree(); return 0; } ``` 在这个示例代码中,我们定义了一个TreeNode结构体,包含一个值val和左右子树指针left和right。然后我们定义了一个buildTree函数,用于递归建立二叉树。在这个函数中,我们首先读入根节点的值,如果值为-1,说明这个节点为空,返回NULL。否则,我们创建一个根节点,然后递归调用建立左右子树的操作。最后返回根节点。 这样,我们就可以通过递归的方式建立二叉树了。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值