给定一根长度为n的绳子,把绳子剪成m段,每段绳子的长度都记为k[0],k[1],…,k[m]。请问k[0] x k[1] x…x k[m]可能的最大乘积是多少?
定义f(n)为把长度为n的绳子剪成若干段后各段长度乘积的最大值。按照从下而上的顺序进行计算,先得到f(2)和f(3),再得到f(4)和f(5),最后得到f(n)。
当绳子的长度为2时,只可能剪成长度为1的两段,即f(2)=1。当绳子的长度为3时,可以把绳子剪成长度为1和2的两段或长度为1的三段,因此f(3)=2。
代码如下:
#include<stdio.h>
#include<stdlib.h>
#include<math.h>
int MaxSolution1(int length)
{
if (length < 2)
return 0;
if (length == 2)
return 1;
if (length == 3)
return 2;
//product数组用于存放长度为i的绳子乘积最优解
int* product = (int *)malloc((length + 1)*sizeof(int));
product[0] = 0;
product[1] = 1;
product[2] = 2;
product[3] = 3;
int max = 0;
//数组中第i1个元素表示把长度为i的绳子剪成若干段后各段长度乘积的最大值
for (int i = 4; i <= length; ++i)
{
max = 0;
for (int j = 1; j <= i / 2; ++j)
{
int product2 = product[j] * product[i - j];
if (max < product2)
{
max = product2;
}
product[i] = max;
}
}
max = product[length];
free(product);
return max;
}