二叉树的前、中、后序遍历
1、遍历方式
前序遍历:父节点→左子树→右子树
中序遍历:左子树→父节点→右子树
后序遍历:左子树→右子树→父节点
如何区分遍历方式:看输出父节点的顺序就可确定是什么遍历。
如下图的二叉树:
输出顺序:
前序遍历:1,2,3,5,4
中序遍历:2,1,5,3,4
后序遍历:2,5,4,3,1
2 代码实现
2.1 创建HeroNode节点
class HeroNode{
private int no;
private String name;
private HeroNode left;
private HeroNode right;
public HeroNode(int no, String name) {
this.no = no;
this.name = name;
}
public int getNo() {
return no;
}
public void setNo(int no) {
this.no = no;
}
public String getName() {
return name;
}
public void setName(String name) {
this.name = name;
}
public HeroNode getLeft() {
return left;
}
public void setLeft(HeroNode left) {
this.left = left;
}
public HeroNode getRight() {
return right;
}
public void setRight(HeroNode right) {
this.right = right;
}
@Override
public String toString() {
return "HeroNode{" +
"no=" + no +
", name='" + name + '\'' +
'}';
}
/**
* 前序遍历的方法:父节点→左子树→右子树
*/
public void preOrder(){
System.out.println(this);
//递归向左子树前序遍历
if(this.left!=null){
this.left.preOrder();
}
//右
if(this.right!=null){
this.right.preOrder();
}
}
/**
* 中序遍历:左子树→父节点→右子树
*/
public void infixOrder(){
if(this.left!=null){
this.left.infixOrder();
}
System.out.println(this);
if(this.right!=null){
this.right.infixOrder();
}
}
/**
* 后序遍历:左子树→右子树→父节点
*/
public void postOrder(){
if(this.left!=null){
this.left.postOrder();
}
if(this.right!=null){
this.right.postOrder();
}
System.out.println(this);
}
}
2.2 构建二叉树
class BinaryTree {
private HeroNode root;
public void setRoot(HeroNode root) {
this.root = root;
}
//前序遍历
public void preOrder() {
if (this.root != null) {
this.root.preOrder();
} else {
System.out.println("二叉树为空,无法遍历");
}
}
//中序遍历
public void infixOrder() {
if (this.root != null) {
this.root.infixOrder();
} else {
System.out.println("二叉树为空,无法遍历");
}
}
//后序遍历
public void postOrder() {
if (this.root != null) {
this.root.postOrder();
} else {
System.out.println("二叉树为空,无法遍历");
}
}
}
2.3 测试方法
构建的二叉树结构与上图相同
public class BinaryTreeDemo {
public static void main(String[] args) {
//测试
BinaryTree binaryTree = new BinaryTree();
HeroNode root = new HeroNode(1, "1");
HeroNode node2 = new HeroNode(2, "2");
HeroNode node3 = new HeroNode(3, "3");
HeroNode node4 = new HeroNode(4, "4");
HeroNode node5 = new HeroNode(5, "5");
root.setLeft(node2);
root.setRight(node3);
node3.setLeft(node5);
node3.setRight(node4);
binaryTree.setRoot(root);
System.out.println("前序遍历:"); // 1,2,3,5,4
binaryTree.preOrder();
System.out.println("中序遍历:"); // 2,1,5,3,4
binaryTree.infixOrder();
System.out.println("后序遍历:"); // 2,5,4,3,1
binaryTree.postOrder();
}
}