二叉树
1.树概念及结构
树是一种非线性的数据结构,它是由n(n>=0)个有限结点组成一个具有层次关系的集合。把它叫做树是因
为它看起来像一棵倒挂的树,也就是说它是根朝上,而叶朝下的。它具有以下的特点:每个结点有零个或多
个子结点;没有父结点的结点称为根结点;每一个非根结点有且只有一个父结点;除了根结点外,每个子结
点可以分为多个不相交的子树
1.树的基本概念
节点的度:一个节点含有的子树的个数称为该节点的度;
叶节点或终端节点:度为0的节点称为叶节点;
**非终端节点或分支节点:**度不为0的节点;
树的度:一棵树中,最大的节点的度称为树的度; 如上图:树的度为6
节点的层次:从根开始定义起,根为第1层,根的子节点为第2层,以此类推;
树的高度或深度:树中节点的最大层次; 如上图:树的高度为4
森林:由m(m>=0)棵互不相交的树的集合称为森林;
2.树的表示
孩子兄弟表示法
2.二叉树
1.概念:
一棵二叉树是结点的一个有限集合,该集合或者为空,或者是由一个根节点加上两棵别称为左子树和右子树
的二叉树组成。
2.二叉树的特点:
每个结点最多有两棵子树,即二叉树不存在度大于2的结点。
二叉树的子树有左右之分,其子树的次序不能颠倒
3.几种特殊的二叉树
满二叉树:一个二叉树,如果每一个层的结点数都达到最大值,则这个二叉树就是满二叉树。也就是
说,如果一个二叉树的层数为K,且结点总数是(2^k) -1 ,则它就是满二叉树。
完全二叉树:完全二叉树是效率很高的数据结构,完全二叉树是由满二叉树而引出来的。对于深度为K
的,有n个结点的二叉树,当且仅当其每一个结点都与深度为K的满二叉树中编号从1至n的结点一一对
应时称之为完全二叉树。 要注意的是满二叉树是一种特殊的完全二叉树。
4.二叉树的存储结构
二叉树一般可以使用两种结构存储,一种顺序结构,一种链式结构。
3.二叉树的遍历
1.前序遍历
// 左子树 根 右子树
void inorderTraversal(Node *root) {
// 空树
if (root == NULL) {
return;
}
inorderTraversal(root->left);
printf("%d ", root->value);
inorderTraversal(root->right);
}
2.中序遍历
// 左子树 根 右子树
void inorderTraversal(Node *root) {
// 空树
if (root == NULL) {
return;
}
inorderTraversal(root->left);
printf("%d ", root->value);
inorderTraversal(root->right);
}
3.后序遍历
// 左子树 右子树 根
void postorderTraversal(Node *root) {
// 空树
if (root == NULL) {
return;
}
postorderTraversal(root->left);
postorderTraversal(root->right);
printf("%d ", root->value);
}
4.层序遍历
创建二叉树
Node * CreateTree(char preorder[], int size, int *pUsed) {
if (size == 0) {
*pUsed = 0;
return NULL;
}
else if (preorder[0] == '#') {
*pUsed = 1;
return NULL;
}
else {
//创建根结点
Node* root = CreatNode(preorder[0]);
int leftused = 0;
int rightused = 0;
//创建左子树
root->left = CreateTree(preorder + 1, size - 1, &leftused);
//创建右子树
root->right = CreateTree(preorder + 1 + leftused,
size - 1 - leftused, &rightused);
//相当于返回值
*pUsed = 1 + leftused + rightused;
return root;
}
}
堆
堆的概念:
如果有一个关键码的集合K = {k0,k1, k2,…,kn-1},把它的所有元素按完全二叉树的顺序存储方式存储
在一个一维数组中,并满足:Ki <= K2i+1 且 Ki<= K2i+2 (Ki >= K2i+1 且 Ki >= K2i+2) i = 0,1,2…,则称为
小堆(或大堆)。将根节点最大的堆叫做最大堆或大根堆,根节点最小的堆叫做最小堆或小根堆。
逻辑上就是完全二叉树,利用顺序存储存在数组:
堆的性质:
堆中某个节点的值总是不大于或不小于其父节点的值;
堆总是一棵完全二叉树。
堆向下调整算法:
void AdjustDown2(int tree[], int size, int rootIdx) {
if (2 * rootIdx + 1 >= size) {
return;
}
int minIdx;
if (2 * rootIdx + 2 >= size) {
minIdx = 2 * rootIdx + 1;
}
else if (tree[2 * rootIdx + 1] <= tree[2 * rootIdx + 2]) {
minIdx = 2 * rootIdx + 1;
}
else {
minIdx = 2 * rootIdx + 2;
}
if (tree[rootIdx] <= tree[minIdx]) {
return;
}
else {
int t = tree[minIdx];
tree[minIdx] = tree[rootIdx];
tree[rootIdx] = t;
AdjustDown2(tree, size, minIdx);
}
}
堆向上调整算法:
void AdjustUp(int tree[], int size, int child) {
if (child == 0) {
return;
}
int parent = (child - 1) / 2;
if (tree[child] >= tree[parent]) {
return;
}
int t = tree[child];
tree[child] = tree[parent];
tree[parent] = t;
AdjustUp(tree, size, parent);
}