我只是一名搬运工,以下内容来自:刘建平Pinard:https://www.cnblogs.com/pinard/p/6251584.html
1. 前言
奇异值分解(Singular Value Decomposition,以下简称SVD)是在机器学习领域广泛应用的算法,它不光可以用于降维算法中的特征分解,还可以用于推荐系统,以及自然语言处理等领域。是很多机器学习算法的基石。本文就对SVD的原理做一个总结,并讨论在在PCA降维算法中是如何运用运用SVD的。
2. 回顾特征值和特征向量
我们首先回顾下特征值和特征向量的定义如下:
A
x
=
λ
x
Ax=\lambda x
Ax=λx
其中A是一个 n × n n \times n n×n的实对称矩阵, x x x是一个 n n n维向量,则我们说 λ \lambda λ是矩阵A的一个特征值,而 x x x是矩阵A的特征值 λ \lambda λ所对应的特征向量。
求出特征值和特征向量有什么好处呢? 就是我们可以将矩阵A特征分解。如果我们求出了矩阵A的 n n n个特征值 λ 1 ≤ λ 2 ≤ . . . ≤ λ n \lambda_1 \leq \lambda_2 \leq ... \leq \lambda_n λ1≤λ2≤...≤λn,以及这 n n n个特征值所对应的特征向量 { w 1 , w 2 , . . . w n } \{w_1,w_2,...w_n\} {w1,w2,...wn},,如果这 n n n个特征向量线性无关,那么矩阵A就可以用下式的特征分解表示: A = W Σ W − 1 A=W\Sigma W^{-1} A=WΣW−1
其中W是这 n n n个特征向量所张成的 n × n n \times n n×n维矩阵,而 Σ \Sigma Σ为这n个特征值为主对角线的 n × n n \times n n×n维矩阵。
一般我们会把W的这 n n n个特征向量标准化,即满足 ∣ ∣ w i ∣ ∣ 2 = 1 ||w_i||_2 =1 ∣∣wi∣∣2=1, 或者说 w i T w i = 1 w_i^Tw_i =1 wiTwi=1,此时W的 n n n个特征向量为标准正交基,满足 W T W = I W^TW=I WTW=I,即 W T = W − 1 W^T=W^{-1} WT=W−1, 也就是说W为酉矩阵。
这样我们的特征分解表达式可以写成 A = W Σ W T A=W\Sigma W^T A=WΣWT
注意到要进行特征分解,矩阵A必须为方阵。那么如果A不是方阵,即行和列不相同时,我们还可以对矩阵进行分解吗?答案是可以,此时我们的SVD登场了。
3. SVD的定义
SVD也是对矩阵进行分解,但是和特征分解不同,SVD并不要求要分解的矩阵为方阵。假设我们的矩阵A是一个
m
×
n
m \times n
m×n的矩阵,那么我们定义矩阵A的SVD为:
A
=
U
Σ
V
T
A = U\Sigma V^T
A=UΣVT
其中U是一个 m × m m \times m m×m的矩阵, Σ \Sigma Σ是一个 m × n m \times n m×n的矩阵,除了主对角线上的元素以外全为0,主对角线上的每个元素都称为奇异值,V是一个 n × n n \times n n×n的矩阵。U和V都是酉矩阵,即满足 U T U = I , V T V = I U^TU=I, V^TV=I UTU=I,VTV=I。
下图可以很形象的看出上面SVD的定义:
那么我们如何求出SVD分解后的
U
,
Σ
,
V
U, \Sigma, V
U,Σ,V这三个矩阵呢?
如果我们将A的转置和A做矩阵乘法,那么会得到
n
×
n
n \times n
n×n的一个方阵
A
T
A
A^TA
ATA。既然
A
T
A
A^TA
ATA是方阵,那么我们就可以进行特征分解,得到的特征值和特征向量满足下式:
(
A
T
A
)
v
i
=
λ
i
v
i
(A^TA)v_i = \lambda_i v_i
(ATA)vi=λivi
这样我们就可以得到矩阵 A T A A^TA ATA的n个特征值和对应的n个特征向量 v v v了。将 A T A A^TA ATA的所有特征向量张成一个 n × n n \times n n×n的矩阵V,就是我们SVD公式里面的V矩阵了。一般我们将V中的每个特征向量叫做A的右奇异向量。
如果我们将A和A的转置做矩阵乘法,那么会得到
m
×
m
m \times m
m×m的一个方阵
A
A
T
AA^T
AAT。既然
A
A
T
AA^T
AAT是方阵,那么我们就可以进行特征分解,得到的特征值和特征向量满足下式:
(
A
A
T
)
u
i
=
λ
i
u
i
(AA^T)u_i = \lambda_i u_i
(AAT)ui=λiui
这样我们就可以得到矩阵 A A T AA^T AAT的m个特征值和对应的m个特征向量 u u u了。将 A A T AA^T AAT的所有特征向量张成一个 m × m m \times m m×m的矩阵U,就是我们SVD公式里面的U矩阵了。一般我们将U中的每个特征向量叫做A的左奇异向量。
U和V我们都求出来了,现在就剩下奇异值矩阵 Σ \Sigma Σ没有求出了。由于 Σ \Sigma Σ除了对角线上是奇异值其他位置都是0,那我们只需要求出每个奇异值 σ \sigma σ就可以了。
我们注意到:
A
=
U
Σ
V
T
⇒
A
V
=
U
Σ
V
T
V
⇒
A
V
=
U
Σ
A=U\Sigma V^T \Rightarrow AV=U\Sigma V^TV \Rightarrow AV=U\Sigma
A=UΣVT⇒AV=UΣVTV⇒AV=UΣ
⇒
A
v
i
=
σ
i
u
i
⇒
σ
i
=
A
v
i
/
u
i
\Rightarrow Av_i = \sigma_i u_i \Rightarrow\sigma_i =Av_i /u_i
⇒Avi=σiui⇒σi=Avi/ui
这样我们可以求出我们的每个奇异值,进而求出奇异值矩阵 Σ \Sigma Σ。
上面还有一个问题没有讲,就是我们说 A T A A^TA ATA的特征向量组成的就是我们SVD中的V矩阵,而 A A T AA^T AAT的特征向量组成的就是我们SVD中的U矩阵,这有什么根据吗?这个其实很容易证明,我们以V矩阵的证明为例。 A = U Σ V T ⇒ A T = V Σ T U T A=U\Sigma V^T \Rightarrow A^T=V\Sigma^T U^T A=UΣVT⇒AT=VΣTUT ⇒ A T A = V Σ T U T U Σ V T = V Σ 2 V T \Rightarrow A^TA =V\Sigma^T U^TU\Sigma V^T = V\Sigma^2V^T ⇒ATA=VΣTUTUΣVT=VΣ2VT
上式证明使用了: U T U = I , Σ T Σ = Σ 2 。 U^TU=I, \Sigma^T\Sigma=\Sigma^2。 UTU=I,ΣTΣ=Σ2。可以看出 A T A A^TA ATA的特征向量组成的的确就是我们SVD中的V矩阵。类似的方法可以得到 A A T AA^T AAT的特征向量组成的就是我们SVD中的U矩阵。
进一步我们还可以看出我们的特征值矩阵等于奇异值矩阵的平方,也就是说特征值和奇异值满足如下关系:
σ
i
=
λ
i
\sigma_i = \sqrt{\lambda_i}
σi=λi
这样也就是说,我们可以不用 σ i = A v i / u i \sigma_i =Av_i /u_i σi=Avi/ui来计算奇异值,也可以通过求出 A T A A^TA ATA的特征值取平方根来求奇异值。
4. SVD计算举例
这里我们用一个简单的例子来说明矩阵是如何进行奇异值分解的。我们的矩阵A定义为:
A
=
(
0
1
1
1
1
0
)
\mathbf{A} = \left( \begin{array}{ccc} 0 & 1\\ 1 & 1\\ 1&0 \end{array} \right)
A=⎝⎛011110⎠⎞
我们首先求出
A
T
A
A^TA
ATA和
A
A
T
AA^T
AAT
A
T
A
=
(
0
1
1
1
1
0
)
(
0
1
1
1
1
0
)
=
(
2
1
1
2
)
\mathbf{A^TA} = \left( \begin{array}{ccc} 0 & 1 & 1\\ 1 & 1 & 0 \end{array} \right) \left( \begin{array}{ccc} 0 & 1\\ 1 & 1\\ 1 & 0 \end{array} \right) = \left( \begin{array}{ccc} 2 & 1 \\ 1 & 2 \end{array} \right)
ATA=(011110)⎝⎛011110⎠⎞=(2112)
A
A
T
=
(
0
1
1
1
1
0
)
(
0
1
1
1
1
0
)
=
(
1
1
0
1
2
1
0
1
1
)
\mathbf{AA^T} = \left( \begin{array}{ccc} 0&1\\ 1&1\\ 1&0 \end{array} \right) \left( \begin{array}{ccc} 0&1 &1\\ 1&1&0 \end{array} \right) =\left( \begin{array}{ccc} 1&1 &0\\ 1&2 &1\\ 0&1&1 \end{array} \right)
AAT=⎝⎛011110⎠⎞(011110)=⎝⎛110121011⎠⎞
进而求出
A
T
A
A^TA
ATA的特征值和特征向量:
λ
1
=
3
;
v
1
=
(
1
/
2
1
/
2
)
;
λ
2
=
1
;
v
2
=
(
−
1
/
2
1
/
2
)
\lambda_1= 3; v_1 = \left( \begin{array}{ccc} 1/\sqrt{2} \\ 1/\sqrt{2} \end{array} \right); \lambda_2= 1; v_2 = \left( \begin{array}{ccc} -1/\sqrt{2} \\ 1/\sqrt{2} \end{array} \right)
λ1=3;v1=(1/21/2);λ2=1;v2=(−1/21/2)
接着求
A
A
T
AA^T
AAT的特征值和特征向量:
λ
1
=
3
;
u
1
=
(
1
/
6
2
/
6
1
/
6
)
;
λ
2
=
1
;
u
2
=
(
1
/
2
0
−
1
/
2
)
;
λ
3
=
0
;
u
3
=
(
1
/
3
−
1
/
3
1
/
3
)
\lambda_1= 3; u_1 = \left( \begin{array}{ccc} 1/\sqrt{6} \\ 2/\sqrt{6} \\ 1/\sqrt{6} \end{array} \right); \lambda_2= 1; u_2 = \left( \begin{array}{ccc} 1/\sqrt{2} \\ 0 \\ -1/\sqrt{2}\end{array} \right); \lambda_3= 0; u_3 = \left( \begin{array}{ccc} 1/\sqrt{3} \\ -1/\sqrt{3}\\ 1/\sqrt{3} \end{array} \right)
λ1=3;u1=⎝⎛1/62/61/6⎠⎞;λ2=1;u2=⎝⎛1/20−1/2⎠⎞;λ3=0;u3=⎝⎛1/3−1/31/3⎠⎞
利用
A
v
i
=
σ
i
u
i
,
i
=
1
,
2
Av_i = \sigma_i u_i, i=1,2
Avi=σiui,i=1,2求奇异值:
(
0
1
1
1
1
0
)
(
1
/
2
1
/
2
)
=
σ
1
(
1
/
6
2
/
6
1
/
6
)
⇒
σ
1
=
3
\left( \begin{array}{ccc} 0&1\\ 1&1\\ 1&0 \end{array} \right) \left( \begin{array}{ccc} 1/\sqrt{2} \\ 1/\sqrt{2} \end{array} \right) = \sigma_1 \left( \begin{array}{ccc} 1/\sqrt{6} \\ 2/\sqrt{6} \\ 1/\sqrt{6} \end{array} \right) \Rightarrow \sigma_1=\sqrt{3}
⎝⎛011110⎠⎞(1/21/2)=σ1⎝⎛1/62/61/6⎠⎞⇒σ1=3
(
0
1
1
1
1
0
)
(
−
1
/
2
1
/
2
)
=
σ
2
(
1
/
2
0
−
1
/
2
)
⇒
σ
2
=
1
\left( \begin{array}{ccc} 0&1\\ 1&1\\ 1&0 \end{array} \right) \left( \begin{array}{ccc} -1/\sqrt{2} \\ 1/\sqrt{2}\end{array} \right) = \sigma_2 \left( \begin{array}{ccc} 1/\sqrt{2} \\ 0 \\ -1/\sqrt{2}\end{array} \right) \Rightarrow \sigma_2=1
⎝⎛011110⎠⎞(−1/21/2)=σ2⎝⎛1/20−1/2⎠⎞⇒σ2=1
当然,我们也可以用 σ i = λ i \sigma_i = \sqrt{\lambda_i} σi=λi直接求出奇异值为 3 \sqrt{3} 3和1.
最终得到A的奇异值分解为:
A
=
U
Σ
V
T
=
(
1
/
6
1
/
2
1
/
3
2
/
6
0
−
1
/
3
1
/
6
−
1
/
2
1
/
3
)
(
3
0
0
1
0
0
)
(
1
/
2
1
/
2
−
1
/
2
1
/
2
)
A=U\Sigma V^T = \left( \begin{array}{ccc} 1/\sqrt{6} &1/\sqrt{2} &1/\sqrt{3}\\ 2/\sqrt{6} & 0 &-1/\sqrt{3}\\ 1/\sqrt{6} &-1/\sqrt{2} &1/\sqrt{3} \end{array} \right) \left( \begin{array}{ccc} \sqrt{3} &0 \\ 0 &1\\ 0 &0 \end{array} \right) \left( \begin{array}{ccc} 1/\sqrt{2}&1/\sqrt{2}\\ -1/\sqrt{2}&1/\sqrt{2} \end{array} \right)
A=UΣVT=⎝⎛1/62/61/61/20−1/21/3−1/31/3⎠⎞⎝⎛300010⎠⎞(1/2−1/21/21/2)
5. SVD的一些性质
上面几节我们对SVD的定义和计算做了详细的描述,似乎看不出我们费这么大的力气做SVD有什么好处。那么SVD有什么重要的性质值得我们注意呢?
对于奇异值,它跟我们特征分解中的特征值类似,在奇异值矩阵中也是按照从大到小排列,而且奇异值的减少特别的快,在很多情况下,前10%甚至1%的奇异值的和就占了全部的奇异值之和的99%以上的比例。也就是说,我们也可以用最大的k个的奇异值和对应的左右奇异向量来近似描述矩阵。也就是说:
A
m
×
n
=
U
m
×
m
Σ
m
×
n
V
n
×
n
T
≈
U
m
×
k
Σ
k
×
k
V
k
×
n
T
A_{m \times n} = U_{m \times m}\Sigma_{m \times n} V^T_{n \times n} \approx U_{m \times k}\Sigma_{k \times k}V^T_{k \times n}
Am×n=Um×mΣm×nVn×nT≈Um×kΣk×kVk×nT
其中k要比n小很多,也就是一个大的矩阵A可以用三个小的矩阵 U m × k , Σ k × k , V k × n T U_{m \times k},\Sigma_{k \times k} ,V^T_{k \times n} Um×k,Σk×k,Vk×nT来表示。如下图所示,现在我们的矩阵A只需要灰色的部分的三个小矩阵就可以近似描述了。
由于这个重要的性质,SVD可以用于PCA降维,来做数据压缩和去噪。也可以用于推荐算法,将用户和喜好对应的矩阵做特征分解,进而得到隐含的用户需求来做推荐。同时也可以用于NLP中的算法,比如潜在语义索引(LSI)。下面我们就对SVD用于PCA降维做一个介绍。
6. SVD用于PCA
在《主成分分析(PCA)原理总结中》,我们讲到要用PCA降维,需要找到样本协方差矩阵 X T X X^TX XTX的最大的d个特征向量,然后用这最大的d个特征向量张成的矩阵来做低维投影降维。可以看出,在这个过程中需要先求出协方差矩阵 X T X X^TX XTX,当样本数多样本特征数也多的时候,这个计算量是很大的。
注意到我们的SVD也可以得到协方差矩阵 X T X X^TX XTX最大的d个特征向量张成的矩阵,但是SVD有个好处,有一些SVD的实现算法可以不求先求出协方差矩阵 X T X X^TX XTX,也能求出我们的右奇异矩阵 V V V。也就是说,我们的PCA算法可以不用做特征分解,而是做SVD来完成。这个方法在样本量很大的时候很有效。实际上,scikit-learn的PCA算法的背后真正的实现就是用的SVD,而不是我们我们认为的暴力特征分解。
另一方面,注意到PCA仅仅使用了我们SVD的右奇异矩阵,没有使用左奇异矩阵,那么左奇异矩阵有什么用呢?
假设我们的样本是
m
×
n
m \times n
m×n的矩阵X,如果我们通过SVD找到了矩阵
X
X
T
XX^T
XXT最大的d个特征向量张成的
m
×
d
m \times d
m×d维矩阵U,则我们如果进行如下处理:
X
d
×
n
′
=
U
d
×
m
T
X
m
×
n
X'_{d\times n} = U_{d \times m}^TX_{m \times n}
Xd×n′=Ud×mTXm×n
可以得到一个 d × n d \times n d×n的矩阵 X ′ X' X′,这个矩阵和我们原来的 m × n m \times n m×n维样本矩阵X相比,行数从m减到了d,可见对行数进行了压缩。也就是说,左奇异矩阵可以用于行数的压缩。相对的,右奇异矩阵可以用于列数即特征维度的压缩,也就是我们的PCA降维。
7. SVD小结
SVD作为一个很基本的算法,在很多机器学习算法中都有它的身影,特别是在现在的大数据时代,由于SVD可以实现并行化,因此更是大展身手。SVD的原理不难,只要有基本的线性代数知识就可以理解,实现也很简单因此值得仔细的研究。当然,SVD的缺点是分解出的矩阵解释性往往不强,有点黑盒子的味道,不过这不影响它的使用。
(欢迎转载,转载请注明出处 刘建平Pinard:https://www.cnblogs.com/pinard/p/6251584.html)