奇异值分解SVD与在降维中的应用

本文详细介绍了奇异值分解(SVD)的概念,对比了它与特征值分解的区别,并阐述了奇异值在度量矩阵信息和降维中的作用。通过奇异值分解,可以对矩阵进行有效的降维,适用于PCA、推荐系统和NLP等领域。
摘要由CSDN通过智能技术生成

目录

1. 特征值分解

1.1 特征值与特征向量

2 奇异值分解

3 奇异值的意义

4 奇异值究竟是什么?

 引用及参考文献


1. 特征值分解

1.1 特征值与特征向量

特征值与特征向量定义如下:

$$ Ax=\lambda x $$

A是一个n*n实对称矩阵,x是一个n维向量,则\lambda是矩阵A的一个特征值,而x是矩阵A的特征值\lambda所对应的特征向量。如果这些特征向量是线性无关的,即任意一个特征向量都不能被其他的向量的线性组合所表述出来,那么矩阵A就可以特征分解,用以下式子表示:

$$ A=W\varSigma W^{-1} $$

其中W是这n个特征向量做组成的n*n维矩阵,而\varSigma是以特征向量对应的n特征值为对角线的n*n维三角阵。将W中的特征向量单位化,使得W^TW=I,即W^T=W^{-1},故特征值分解也可以表达为:

  • 2
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值