自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

zeeq的博客

A WHU LIESMARSer ~

  • 博客(192)
  • 资源 (47)
  • 问答 (1)
  • 收藏
  • 关注

原创 增量式SfM详细流程介绍及实现方法

目前主流的SfM(Structure from Motion,运动结构恢复)可以分为两大类型,一种是全局式的,一种是增量式的。全局式sfm能够一次性得出所有的相机姿态和场景点结构。它通常先求得所有相机的位姿,然后再通过三角化获得场景点。其效率较高,但是其鲁棒性差,很容易受到outlier的影响而导致重建失败。增量式sfm则是一边三角化(triangulation)和pnp(perspective-n-points),一边进行局部BA。这类方法在每次添加图像后都要进行一次BA,效率较低,而且由于误差累积,容易

2020-12-12 22:24:28 17378 24

原创 contextcapture手动添加控制点(刺点)教程

通过添加控制点,可以实现两个坐标系的统一。

2024-01-18 10:30:03 1545

原创 cmake常用命令解析

【代码】cmake常用命令解析。

2023-06-23 06:29:34 1292

原创 服务器配置远程vscode

我的一个使用策略就是,在本地进行代码修改,完成后通过sftp将本地代码同步到远程,然后使用ssh-remote的远程终端,在远程运行代码。ssh-remote的用处可不止是修改远程代码,我觉得一个更重要的功能是,在remote环境下,我们可以在vscode中打开远程的终端了,这样就可以使用终端来运行远程的代码。在同步时,如果细心点,我们可以观察到,vscode左下角的状态栏会一直跳动(如下图所示),显示local的哪个文件正在同步到remote上。打开vscode,在扩展种搜索sftp,点击安装。

2023-06-14 23:22:02 2948

原创 photoscan(metashape)跑GPS辅助的无人机影像SfM(空三)教程

刚打开的photoscan界面如下图所示:然后,点击工作区左上角的添加堆块选项:可以看到新增了一个名为“Chunk 1”的堆块,然后,右击“Chunk 1”,依次选择add、添加照片:即可弹出照片选择窗口,到指定目录下全选图像,然后点击打开即可:之后,在左下角找到参考选项,点击,即可进入参考设置界面:点击参考页面左上角第一个选项,即“导入”选项,然后选择POS文件,即可打开如下界面:

2023-06-14 23:13:59 3024 1

原创 使用pyshp写出shapefile文件方法示例

其中,要组成一个Shapefile,有三个文件是必不可少的,它们分别是".shp", ".shx"与 ".dbf"文件。而其中“真正”的Shapefile的后缀为shp,然而仅有这个文件数据是不完整的,必须要把其他两个附带上才能构成一组完整的地理数据。所有的文件名都必须遵循MS DOS的8.3文件名标准(文件前缀名8个字符,后缀名3个字符,如shapefil.shp),以方便与一些老的应用程序保持兼容性,尽管现在许多新的程序都能够支持长文件名。Shapefile文件用于描述几何体对象:点,折线与多边形。

2023-06-01 00:21:30 343

原创 安装colmap报错CMake Error You must set CMAKE_CUDA_ARCHITECTURES to e.g. ‘native‘, ‘all-major‘, ‘70‘解决方法

找到出错的第255行,从代码中可以看出,出错的原因是编译程序检测到系统有cuda可用,但是我们没有给它设置cuda类型。可选的类型在报错信息里提到了。意思是我们没有设置cuda的编译类型。然后保存退出,再继续执行接下来的安装步骤即可。install成功后,直接终端执行。,感觉写的还挺好的,贴一下如果以后在新的机子上再安装可以参考。关于安装colmap的教程和报错问题解决,看到了一篇。我选择了native,然后将这个变量说明。等,关于这些参数的含义,

2023-06-01 00:16:43 3676

原创 colmap多相机重建多场景及数据库数据快速修改方法

colmap的数据库是可以直接通过ui界面的database management进行修改的,但是通过这种方式,每次只能修改一个单元格的数据,在需要修改的数据量很大的情况下,这将会是一件非常耗时的重复性劳动,且很有可能发生错漏。比如,我在跑数据的时候,就遇到这么一个问题,原本只是有五个不同镜头的倾斜摄影图像,且每个镜头拍摄的图像都放置在图像目录下的不同文件夹里了,按理说应该只会有五个相机模型,但是在提取特征点的时候,colmap给我创建了18个相机模型,这显然是不对的。设置完成后,关闭该选项页,然后点击。

2023-05-03 23:39:41 2466 6

原创 ubuntu18.04安装ceres报错1618: recipe for target ‘internal/ceres/CMakeFiles/ceres.dir/all‘ failed解决方案

看了一下,直接运行上图的这个命令下载的源码可能和压缩包下载的不一样,所以编译时候出错了。于是我也去下载了压缩包,戳。那个博主在底下评论区说他是通过换成16.04版本的ubuntu解决的这个问题(有点暴力)。于是我百度搜了一下这个错误,没找到解决方案,倒是有一篇博客贴了这个错误然后底下直接一句。开始处的latest stable release链接,会自动下载最新稳定版本的压缩包。接下来再根据教程里的cmake步骤一步步执行就可以安装成功了。

2023-03-30 17:02:39 1568

原创 ubuntu重装/升级eigen教程

其原因是eigen的版本太旧了,需要重装升级。3.3 .4我们需要把它升级到3.4.0才行。于是首先需要将旧版本卸载。

2023-03-27 17:17:15 1592

原创 cmake设置编译类型为release命令

cmake编译类型通常默认为debug,但是在编译软件时,一般都需要使用release版本的,debug太慢了。设置为release版本可以在cmake文件里进行,也可以在运行cmake命令时使用参数进行指定。

2023-03-27 16:49:28 3774

原创 /usr/local/cuda-11.0/targets/x86_64-linux/lib/libcudnn_ops_infer.so.8 is not a symbolic link解决方法

然后,我们需要对出错的链接进行重定位。比如我上述报错的第一条内容是。这个问题是符号链接导致的,我们对报错的链接重新定位即可。,而从上图中可以看到,我有个。

2023-03-27 15:27:44 2065

原创 python安装好了某个包但是仍报错ImportError: No module named xxx的解决方法及思路

这是一个应该比较常见的问题,下面首先讲一下该类问题的一般解决 思路,然后再进行一个自我debug的过程描述。

2023-03-08 10:01:31 13242 2

原创 ubuntu服务器创建多用户及用户管理

ubuntu用户管理

2023-02-28 11:25:41 3726

原创 linux下使用vscode进行c++项目开发,CMakeLists.txt、launch.json、tasks.json联合配置需要注意的地方

使用这三者配合,可以实现自动化的运行和调试,如下是三个文件的内容,只要目录结构是。的,那么launch.json和tasks.json则可以直接copy过去使用。其中,launch.json、tasks.json中的。则表示当前打开目录的名字。表示vscode当前打开的目录路径,而。

2023-02-26 18:22:13 1233

原创 linux下使用vscode和cmake高效管理c++项目简明教程

linux系统下vscode和cmake高效管理c++项目

2023-02-26 17:33:36 1572

原创 最新OpenMVG编译安装与逐命令运行增量式和全局式SfM教程(文末附自动化运行脚本)

openmvg是一个轻便的可以逐步运行的SfM开源库,它同时实现了增量式和全局式两种算法。

2023-02-24 22:31:56 1808 2

原创 windows上安装并使用exiftool修改图像exif信息

使用exiftool可以对图像的exif信息进行读取、修改、写入等操作。

2023-01-02 16:06:54 4314 3

原创 pytorch3d旋转矩阵转四元数transforms.matrix_to_quaternion函数隐藏的大坑及其解决方法

这样就存在一个非常大的隐患,因为我们知道,对四元数中的所有数字同时取负,那么它所表示的旋转是不变的。也就是说,matrix_to_quaternion函数转换获得的四元数本身并没有错,但是它没有限制其中的实数w为正,这样就会在诸如我们需要使用四元数的二范数作为网络loss的时候,埋下巨大的隐患(毕竟如果同一个旋转量,一会是正一会是负,网络该信哪个?按照官方解释,每个四元数的第一个数字为实部w,通常我们会规范实部为正数,而如下图所示的输出,很明显,它没有进行这一约束。如下图所示,就是使用。

2022-12-11 21:48:54 1759 3

原创 cmake报错CMake Error at CMakeLists.txt: Can‘t find Google Log (glog). Please set either ... 的解决方法

从前四行输出可以看到,原来我们在clone ceres源码下来的时候,就已经顺便把miniglog给克隆下来了。因此,第三个解决方案也许会是最简单的。我们打开该项目的CMakeLists.txt文件,找到报错的位置(我这里是第467行),然后,在前面加上。也许,当看到找不到一个包的时候,我们的第一反应会是pip install一下。可能是因为pip是安装在虚拟环境内了吧,cmake并不能找到。在编译ceres-solver的时候,报错找不到glog。然后保存退出,再次进行cmake,该问题成功解决。

2022-11-26 16:42:26 8821 7

原创 猿创征文|三维重建领域的开发者工具箱

CloudCompare是一款集三维点云(Point Cloud)数据查看、编辑、处理为一体的三维点云数据配套开源软件,该软件支持多种三维点云数据格式。其所功能包括点云可视化、配准、分割、合并、抽稀、旋转、法向量计算、泊松构网、滤波等功能。除了自带丰富强大的点云数据处理功能之外,CloudCompare(为了简化描述,后续简称cc)还可以方便地进行拓展,比如插件的编写,甚至是下载其源代码直接进行修改等等。

2022-11-01 22:26:00 1706

原创 AttributeError: module ‘matplotlib.cbook‘ has no attribute ‘iterable‘及同类型报错问题的一般解决思路与注意事项

也就是说,比如我现在要跑的这个代码,是作者2020年那会儿公开的,那么,我就可以找一下matplotlib在2020年左右时候的版本号。当然,安装上面说的3.1.0版本是不会报错的,我已经安装成功了。好在使用pip卸载和安装库很方便,所以在针对具体问题的时候,我们可以多尝试不同的版本,从而找到一个合适的匹配。通常是版本太低造成的,比如在后续更新过程中,该方法被改变了,所以再使用以前的方法名,就会报错找不到该方法了。最简单的就是,将已经安装的出错的库卸载掉,然后重新安装更低(或更高)版本的即可。

2022-10-24 20:29:36 7751

原创 对图像和相机参数进行同步缩放的方法及python实现代码

相机的内参和图像的大小是紧密相关的。如果在实验中涉及到对图像进行采样,同时还想要获得图像变换后的相机参数,那么,对相机内参也需要进行同步缩放。对相机参数的修改主要包括相机的内参矩阵K和图像的长宽参数,而相机外参和畸变参数则不需要作修改。对图像进行下采样,一般有两种方式,一个是使用python自带的PIL(Pyhon Imaging Labrary)模块实现,另一个是使用cv2实现。至于为何是这样变换的,可以参考。

2022-10-02 13:41:40 1461 2

原创 本地PyCharm配置ssh进行远程开发教程

主要包括connection里的SSH服务器ip和密码的设置,以及mappings里的本地路径和部署路径的设置(需要注意保持这两个根目录名称一致)。连接相关的设置可以在tools->deployment->configuration里进行设置。

2022-09-23 20:00:22 6098 2

原创 猿创征文|SfM(Structure from Motion)学习之路

SfM全称Structure from Motion,译为运动恢复结构,是三维重建pipeline的一部分,又称稀疏重建,在摄影测量领域则称为空三(空中三角测量)。SfM的任务是,给定一系列具有一定重叠度的图像,去同时估计出拍摄每张图像时相机的的位姿(位置t和姿态R)和被拍摄物体或场景的稀疏点云。...............

2022-08-29 00:28:14 5735

原创 高效率mesh转深度图python代码

要将mesh转换为深度图,有两种思路:遍历mesh的每一个面片,将每个面片往图像上投影,将投影覆盖到的区域深度利用面片顶点的深度进行插值计算。获取图像上所有像素对应的光线,将这些光线与mesh进行求交运算,获取交点的坐标,进而求解交点到像素的距离,即为深度值。  这里介绍的是第2种方法 。使用python语言,基于mesh处理包trimesh(官网)进行计算。此外,由于代码使用了pyembree进行加速,所以需要同时安装pyembree包。这两个包的安装命令:......

2022-08-25 20:30:50 2767

原创 深入理解三维旋转矩阵——R的行和列分别有什么含义

三维旋转矩阵描述的是在三维空间中物体的旋转关系,我们难以直观地从旋转矩阵上看出旋转的具体情况。但是,它可以由欧拉角变换而来,也就是可以视为绕着xyz三个轴分别进行旋转后结果的叠加,是一系列三角函数相乘的结果。比如,通常我们所使用的rpy角:。下面直接进入正题,理解旋转矩阵中不同元素的含义。记被旋转的点p1坐标为(x1, y1, z1),经过旋转矩阵R的作用后,其在新坐标系下的坐标p2变为(x2, y2, z2)。

2022-08-24 09:00:00 5859

原创 shell/bash脚本命令教程

shell里的变量不需要指明变量类型,类似于python,可以直接进行声明和赋值。myage=18#声明一个变量myage,值为20等号前后是没有空格的变量没有类型之分,都默认为string类型,即myage=18和myage=“18”在使用的时候都是一样的直接$变量名${变量名}这两种方式都是可以的,第2种方式在变量名前后加上{},主要是可以界定变量名的范围。echoIam${myage}yearsold#输出为Iam18yearsold。......

2022-07-30 18:43:48 4814

翻译 OpenMVG论文——《Global Fusion of Relative Motions for ... Structure from Motion》论文阅读笔记

  这篇博客翻译的是经典全局式SfM的代表性论文《Global Fusion of Relative Motions for Robust, Accurate and Scalable Structure from Motion》,这篇论文2013年于计算机视觉顶会ICCV上提出,是著名全局式SfM开源库openMVG的原文。  多视图运动恢复结构(SfM)在一个共同的3D坐标系中估计图片的位置和方向。当以增量方式处理视图时,此外部校准可能会发生漂移,这与残差均匀分布的全局方法相反。我们提出了一种新的基于图

2022-06-05 16:46:08 1453 1

原创 二分类结果评价之TP、FP、TN、FN及准确率、精确率、召回率、F1得分的计算方式和python代码实现

混淆矩阵也称误差矩阵,是表示精度评价的一种标准格式,用n行n列的矩阵形式来表示。在二分类场景里是一个2x2的矩阵。如下图。TP(True Positive):真正例,实际上和预测中都是正例;FP(False Positive):假正例,实际上是负例,但是被预测为正例了;FN(False Negative):假负例,实际上是正例,但是被预测为负例了;TN(True Negative):真负例,实际上和预测中都是负例。import numpy as np# 计算混淆矩阵def compute_

2022-05-29 11:10:02 10709 4

原创 使用普鲁克分析对两组相机/三维点(已知对应关系)进行相似变换对齐的方法及python代码

  对两组相机进行对齐,需要首先明确相机坐标系的定义方式,有两种:Xworld = RXcamera + tXcamera = RXworld + t  这两种坐标系的定义是不一样的(其实它们就是一个互逆变换的过程),弄错了的话就没法获得正确的转换结果了(关于这两种坐标系的转换关系,这篇博客里有说明)。在明确了坐标系定义之后,就可以进行计算了。  转换代码参考BARF论文github源码,链接。下面将两种坐标系下的相机组对齐方法都放出来。  1 世界坐标系定义  如果你的坐标系是按照如下方

2022-05-21 22:34:00 1322

原创 两组相机(或三维点)对齐方法介绍及实现代码(求解相似变换,包含旋转R、平移t、尺度s)

  这个变换用于将生成的稀疏重建场景对齐到真值上。由于SfM(Structure from Motion,运动恢复结构)求解的结果是尺度未定的,所以重建场景与真值之间不仅会相差一个旋转与平移,还会存在尺度缩放。待求解的问题可以描述为:已知一组相机(个数为m)的位姿真值Rgt、tgt和预测位姿Rpred、tpred,现要将预测值对齐到真值上。它们之间会相差一个相似变换Msimilarity,包括尺度s、旋转量R、平移量t,可以根据如下步骤进行求解:  1 求解旋转R  首先计算所有m个相机的位姿差异总和

2022-05-13 16:34:58 2518 4

原创 【踩坑记录】colmap中的相机位姿的坐标系定义及其可视化结果的隐含转换

1 坐标系定义及转换  首先介绍一下世界坐标系和相机坐标系之间的转换,它们之间是存在一个转换关系的。现假设空间中一点X,它在相机坐标系下的坐标是Xcamera,在世界坐标系下的坐标是Xworld。假设它通过R和t实现从相机坐标系到世界坐标系之间的转换:Xworld = RXcamera + t  那么,由上式,我们可以推得从世界坐标系向相机坐标系的转换关系(RT=R-1,所以通常直接使用RT即可):Xcamera = RTXworld - RTt  所以,两个坐标系之间的转换,需要看其具体

2022-05-06 11:19:11 15866 63

原创 pytorch旋转矩阵转四元数及各种旋转表示方式之间的转换实现代码

在做三维相关工作的时候,经常会遇到需要在不同旋转表示方式之间进行转换的情况。常用的旋转参数化方式有轴角、旋转矩阵、欧拉角、四元数等,它们之间的转换推导可以查看这里。不同旋转表示方式之间的转换在网上可以找到很多相关的代码,同时也有一些库帮助我们实现了它们之间的转换,比如python里的scipy包,其旋转相关的转换代码在scipy.spatial.transform里面,C++里则可以使用Eigen库来实现。而在pytorch里,则可以使用pytorch3d包。在pytorch3d的transforms模块

2022-04-27 21:48:54 5868 6

原创 numpy实现array数组隔行切片及其逆操作隔行数组扩展的实现方法

  假设现在有一个array a,我想要每隔一行取一行,然后将结果拼接起来,获得array b,如下所示:a =[[ 0., 1., 2., 3., 4.], [ 0., 1., 2., 3., 4.], [ 5., 6., 7., 8., 9.], [ 5., 6., 7., 8., 9.], [10., 11., 12., 13., 14.], [10., 11., 12., 13., 14.], [15., 16., 17., 18., 19.],

2022-04-27 21:10:53 3260

原创 【colmap数据格式转换】关于colmap稀疏重建结果的数据格式和数据库内容的一些笔记

  由于实验需要,最近几天在数据转换过程中深入了解了colmap稀疏重建结果的存储细节。针对数据转换,colmap官方有给出了一些转换示例的脚本代码,包括matlab、python等语言,链接。但是,即便如此,colmap官方对一些数据组织形式还是没有做更详细的说明(一把辛酸泪,很多结论都是在踩了很深的坑之后才得到的)。现记录如下:colmap数据库中,keypoints表格的data行数是实际特征点数的三倍,其中每三行的第一行才是特征点的像素坐标值,二三两行具体作用未知,如下图所示:在执行S

2022-04-25 22:09:24 4601 1

原创 用向量叉乘快速判断点在三角形内外原理与代码

import numpy as npdef inTri(a, b, c, p): ab = b-a ap = p-a bc = c-b bp = p-b ca = a-c cp = p-c if np.cross(ab,ap)>0 and np.cross(bc,bp)>0 and np.cross(ca,cp)>0: # 在三角形内部 return 1 if np.cross(ab,ap) * np

2022-03-30 00:37:18 4676

原创 Colmap论文——《Structure-from-Motion Revisited》论文阅读笔记

  最近又将Colmap论文翻出来仔细阅读总结了一下,于是顺便写个博客记录一下。Structure-from-Motion Revisited是当前SOTA的增量式SfM算法Colmap的论文,发表于2016年计算机视觉顶会CVPR。它是增量式SfM里程碑式的作品。论文地址:https://openaccess.thecvf.com/content_cvpr_2016/papers/Schonberger_Structure-From-Motion_Revisited_CVPR_2016_paper.p

2022-03-27 13:39:06 11340 10

原创 numpy ndarray构建符合条件的索引数组——使用np.stack和np.where

  首先介绍一下np.stack和np.where两个方法:  1 np.stack()  np.stack()函数定义为numpy.stack(arrays, axis=0),用于将多个具有相同形状的array按某个维度进行堆叠,默认是在0维度上(可以理解为在哪个维度上就是增加哪个维度)。更为详细的介绍可参考这里,如下一个简单例子:>>> import numpy as np>>> x = np.arange(9).reshape([3,3])>&gt

2022-03-03 16:31:46 1290

原创 ubuntu20.04禁止自动休眠的几种方式

最近不知道为啥,每天晚上ubuntu系统都会自动进入休眠状态,然后远程连接就断开了,还得等第二天到机子那按一下电源键来唤醒系统。可是回想起来自己也没有修改过任何设置,之前电脑都是不会自动休眠的,这就很奇怪了。不过,个人猜测自动休眠也可能是由于系统更新了然后某些设置被更改了。断断续续尝试了几个解决方法,在此总结记录一下,分享给有需要的人。...

2022-02-28 16:11:30 29884 2

wordcloud_source.zip

python词云素材资料

2021-12-19

METHODS FOR NON-LINEAR LEAST SQUARES PROBLEMS.zip

最小二乘

2021-10-26

DROID-SLAM.pdf

DROID-SLAM论文

2021-09-14

Deep Inside Convolutional Networks.zip

Deep Inside Convolutional Networks.zip

2021-03-16

Explaining and Harnessing Adversarial Examples.zip

Explaining and Harnessing Adversarial Examples.zip

2021-03-16

Understanding Deep Image Representations by Inverting Them.zip

Understanding Deep Image Representations by Inverting Them.zip

2021-03-16

ImageNet Large Scale Visual Recognition Challenge.pdf

ImageNet Large Scale Visual Recognition Challenge.pdf

2021-03-16

Do Convnets Learn Correspondence.pdf

Do Convnets Learn Correspondence.pdf

2021-03-16

Visualizing and Understanding Convolutional Networks (2).zip

Visualizing and Understanding Convolutional Networks (2).zip

2021-03-16

Rich feature hierarchies

Rich feature hierarchies

2021-03-16

Guided Backpropagation.zip

Guided Backpropagation.zip

2021-03-16

visualising DeconvNet.zip

visualising DeconvNet.zip

2021-03-16

Intriguing properties of neural networks.pdf

Intriguing properties of neural networks.pdf

2021-03-16

_______LENet.zip

_______LENet.zip

2021-03-16

Inception-v4.zip

Inception-v4.zip

2021-03-16

Identity Mappings in Deep Residual Networks.zip

Identity Mappings in Deep Residual Networks.zip

2021-03-16

_______ResNet.zip

_______ResNet.zip

2021-03-16

_______VGGNet.zip

_______VGGNet.zip

2021-03-16

GoogLeNet.zip

GoogLeNet.zip

2021-03-16

Visualizing and Understanding Convolutional Networks.zip

Visualizing and Understanding Convolutional Networks.zip

2021-03-16

LeNet____.zip

LeNet____.zip

2021-03-16

ImageNet Classification with Deep Convolutional Neural Networks.pdf

ImageNet Classification with Deep Convolutional Neural Networks.pdf

2021-03-15

Striving for Simplicity:The All Convolutional Net.zip

Striving for Simplicity:The All Convolutional Net.zip

2021-03-15

Multi-Scale Context Aggregation by Dilated Convolutions.zip

Multi-Scale Context Aggregation by Dilated Convolutions.zip

2021-03-15

Network In Network.zip

Network In Network.zip

2021-03-15

Maxout Networks.pdf

Maxout Networks.pdf

2021-03-12

AlexNet.zip

ImageNet Classification with Deep Convolutional Neural Networks.zip

2021-03-12

Distributed Representations of Words and Phrases and their Compositionality.zip

Distributed Representations of Words and Phrases and their Compositionality.zip

2021-03-12

Dropout Training as Adaptive Regularization.pdf

Dropout Training as Adaptive Regularization.pdf

2021-03-12

Dropout:A Simple Way to Prevent Neural Networks from Overfitting.zip

Dropout:A Simple Way to Prevent Neural Networks from Overfitting.zip

2021-03-12

Regularization and variable selection via the elastic net.pdf

Regularization and variable selection via the elastic net.pdf

2021-03-12

Batch Normalization:Accelerating Deep Network Training

Batch Normalization:Accelerating Deep Network Training

2021-03-12

Delving Deep into Rectifiers:Surpassing Human-Level Performance

Delving Deep into Rectifiers:Surpassing Human-Level Performance

2021-03-12

Understanding the difficulty of training deep feedforward neural networks.zip

Understanding the difficulty of training deep feedforward neural networks.zip

2021-03-12

Random Search for Hyper-Parameter Optimization.zip

Random Search for Hyper-Parameter Optimization.zip

2021-03-11

Unit Tests for Stochastic Optimization.pdf

Unit Tests for Stochastic Optimization.pdf

2021-03-11

ADAM:A METHOD FOR STOCHASTIC OPTIMIZATION.zip

ADAM:A METHOD FOR STOCHASTIC OPTIMIZATION.zip

2021-03-11

Adaptive Subgradient Methods .pdf

Adaptive Subgradient Methods

2021-03-11

Fast large-scale optimization by unifying stochastic gradient

Fast large-scale optimization by unifying stochastic gradient and quasi-Newton methods

2021-03-11

Large Scale Distributed Deep Networks.pdf

Large Scale Distributed Deep Networks

2021-03-11

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除