题目:求小于等于自然数N(N>=2)内的所有素数。
等级一:
N=10000,运行时间是21 ms
等级二:
优化:所有偶数中,只有2是素数
N=10000,运行时间是10 ms
等级三:
优化:公约数都是成对出现的,所以只要小于sqrt(i)里没有整除的数即可。
N=10000,结果是:1229 运行时间是0.33 ms
等级四:
优化:只需要确保不能整除小于sqrt(i)的所有素数即可。
N=10000,结果是:1229 运行时间是0.28 ms (这里应该在vector的管理上花费了不少时间)
N=100000000,结果是:5761455 运行时间是25.7 s
等级五:
优化:用内存标记存储素数.
N=100000000,结果是:5761455 运行时间是2458 ms
等级六:
优化:从小到大,每找到一个新的素数s,只需将s*h(s*h<N)的标记置为1即可。(h为大于等于s的所有标记尚且为0的数)
N=100000000,结果是:5761455 运行时间是1172ms
ps:
1.有人说上面的BYTE用了8个bit来表示是否是质数,很浪费内存。用bit位就可以了。确实如些。不过对位的操作会让程序慢很多(经测试大约3倍耗时),有利有弊吧。
2.此文章是几年前我写在另一个帐号上的,现在转过来放这里吧。耗时用现在电脑跑比以前快许多,仅参考。