MATLAB算法实战应用案例精讲-【优化算法】樽海鞘群算法(SSA)及其算法变种(附matlab代码实现)

目录

前言

 算法原理 

算法思想

数学模型

(1)种群初始化

(2)领导者位置更新

(3)跟随者位置更新

 代码实现

 算法流程图

 算法步骤

伪代码

SSA伪代码

 MSSA伪代码

面向全局搜索的自适应领导者樽海鞘群算法

1.1 改进领导者位置更新公式

1.2 引入领导者-跟随者自适应调整策略

 基于混沌映射的自适应樽海鞘群算法

1.1 混沌映射

1.2 自适应权重变化

1.3 追随者机制变化

1.4伪代码

集成随机惯性权重和差分变异操作的樽海鞘群算法 

1.1 PSO算法随机惯性权重的引入

1.2 集成DE算法的变异操作

 基于疯狂自适应的樽海鞘群算法

1.1 Tent映射的种群初始化

1.2 疯狂算子

1.3自适应惯性权重

基于混合策略改进的樽海鞘群算法

(1)加权重心学习策略

(2)自适应惯性权重

(3)逐维随机差分变异

(4)改进后的算法步骤

基于自适应惯性权重的樽海鞘群算法

(1)惯性权重策略

(2)种群成功率策略

(3)差分变异策略

(4)算法步骤

算法拓展

改进的樽海鞘群算法

(1) 对领导者和追随者的改进

(2) 与其他优化算法相结合

1.引言

2.改进樽海鞘群算法

结合密度峰值聚类和改进樽海鞘群算法的遥感图像分割

1.1 基于超像素密度峰值聚类的图像分割

1.2 基于改进樽海鞘群的密度峰值聚类模型求解 

1.3 实验结果与分析

代码实现

MATLAB


前言

樽海鞘是一种海洋无脊椎动物,身体呈桶状且几乎完全透明,以水中浮游植物为食,通过吸入和喷出海水完成在水中移动。在深海中,樽海鞘以一种链式的群行为进行移动和觅食,这种“奇特”的群行为引起了研究者的兴趣。樽海鞘的链式群行为,通常个体首尾相接,形成一条“链”,依次跟随进行移动。在樽海鞘链中,分为领导者和追随者,领导者朝着食物移动并且指导着紧随其后的追随者的移动,追随者的移动按照严格的“等级”制度,只受前一个樽海鞘影响。这样的运动模式使樽海鞘链有很强的全局探索和局部开发能力。
 

樽海鞘群算法( salp swarm algorithm,SSA)是Seyedali Mirjalili等于2017年提出的一种新型智能优化算法[1]。 该算法模拟了樽海鞘链的群体行为,是一种较新颖的群智能优化算法。每次迭代中,领导者指导追随者,以一种链式行为,向食物移动。移动过程中,领导者进行全局探索,而追随者则充分进行局部探索,大大减少了陷入局部最优的情况。 
 

 算法原理 

SSA 算法是一种基于群体智能的全局优化算法。樽海鞘是一种身体组织和移动方式与
  • 0
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

林聪木

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值