Python栈的应用之中缀、前缀和后缀表达式

本文介绍了中缀、前缀和后缀表达式,阐述了它们各自的特点。中缀表达式常见但不易解析,前缀和后缀表达式则有利于计算机解析。文章详细解释了中缀表达式如何转换为后缀表达式,并提供了计算后缀表达式的步骤,以及前缀表达式的计算方法。最后,展示了中缀表达式、前缀表达式和后缀表达式的相同数学含义的例子。
摘要由CSDN通过智能技术生成

中缀表达式:是一个通用的算术或逻辑公式表示方法, 操作符是以中缀形式处于操作数的中间(例:3 + 4)。与前缀表达式(例:+ 3 4)或后缀表达式(例:3 4 +)相比,中缀表达式不容易被电脑解析,但仍被许多程序语言使用,因为它符合人们的普遍用法。
与前缀或后缀表达式不同的是,中缀表达式中括号是必需的。计算过程中必须用括号将操作符和对应的操作数括起来,用于指示运算的次序。如:(a + b) * c = ((a + b) * c), = 后面的表达式称为完全括号表达式。

前缀表达式:是一种逻辑、算术和代数表示方法,其特点是操作符置于操作数的前面。如果操作符的元数(arity)是固定的,则语法上不需要括号仍然能被无歧义地解析。如:* + a b c ,将中缀表达式的 + 移到a+b左侧 ( 的位置,并去除此括号对,再将 * 移到(a+b) * c左侧(的位置,并去除此括号对,结果就是前缀表达式。

后缀表达式:指的是不包含括号,运算符放在两个运算对象的后面,所有的计算按运算符出现的顺序,严格从左向右进行(不再考虑运算符的优先规则)。如:a b + c *,将中缀表达式的 + 移到a + b右侧 ) 的位置,并去除此括号对,再将 * 移到(a+b)*c右侧 ) 的位置,并去除此括号对,结果就是后缀表达式。

下面示例中的3个表达式表达的是同一个意思。
中缀:(((A + B) * C) - ((D - E) * (F + G)))
前缀:- * + A B C * - D E + F G
后缀:A B + C * D E - F G + * -

# 定义栈类
class Stack(object):
     def __init__(self):							#初始化空栈
         self.items = []

     def isEmpty(self):								#是否为空
         return self.items == []

     def push(self, item):							#入栈
         self.items.append(item)

     def pop(self):									#出栈
         return self.items.pop()

     def peek(self):								#查看最后一个元素
         return self.items[len(self.items)-1]

     def size(self):								#查看栈的大小
         return len(self.items)

中缀转后缀:从左到右遍历中缀表达式,遇到操作数(字母及数字),则输出;遇到"(",则进栈;遇到")",则弹出栈顶,若栈顶不为"(“则输出,继续弹出下一个栈顶并比较,直到弹出”(",结束循环;遇到运算符,若栈不为空,且栈顶元素的优先级>=运算符的优先级(表明栈顶元素也是运算符,这2个运算符相邻),弹出并输出栈顶元素,继续循环比较,直到不符合循环条件,再将该运算符入栈;遍历结束后,

中缀表达式后缀表达式,也称为前缀表达式,是一种常见的计算机算法题型,通常通过来实现。Python中可以使用递归方法来进行转换。基本步骤如下: 1. 创建一个空和一个空列表用于存放后缀表达式的元素。 2. 遍历中缀表达式的每个字符: - 如果遇到数字,直接将其添加到后缀表达式列表中。 - 如果遇到运算符,检查它的优先级: - 如果顶运算符优先级小于当前运算符,将顶的运算符和操作数依次加入结果,并清空,然后将当前运算符压入。 - 否则,继续遍历直到遇到优先级更低或等于当前运算符的,再按照上述规则处理。 - 当遍历完所有字符后,如果不为空,需要将中的剩余运算符和操作数依次加入结果。 3. 返回后缀表达式列表。 下面是一个简单的示例Python代码: ```python def infix_to_postfix(expression): prec = {"+": 1, "-": 1, "*": 2, "/": 2, "^": 3} # 定义运算符优先级 output = [] stack = [] for char in expression: if char.isdigit(): output.append(char) elif char in "+-*/^": while (stack and stack[-1] != "(" and prec[char] <= prec[stack[-1]]): output.append(stack.pop()) stack.append(char) elif char == ")": while stack[-1] != "(": output.append(stack.pop()) stack.pop() while stack: output.append(stack.pop()) return ''.join(output) # 使用示例 expression = "a+b*(c-d)" postfix = infix_to_postfix(expression) print(f"后缀表达式:{postfix}") ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值