【POJ2774】后缀数组 / Hash+二分

POJ2774
链接

后缀数组做法

题意求两个串的最长公共子串,我们可以把两个串用一个特殊字符拼接,然后跑SAheight,由于最长公共子串肯定是height中的某一个,而且要满足sa[i]sa[i1]分别属于两个串,所以只要跑一遍后缀数组遍历一遍height就好了。
POJ2774代码

#include <iostream>
#include <stdio.h>
#include <string.h>
using namespace std;
#define maxn 200005

int wa[maxn],wb[maxn],wsf[maxn],wv[maxn],sa[maxn];
int rank[maxn],height[maxn],s[maxn];
char str1[maxn],str2[maxn];
int cmp(int *r,int a,int b,int k)
{
    return r[a]==r[b]&&r[a+k]==r[b+k];
}
void getsa(int *r,int *sa,int n,int m)
{
    int i,j,p,*x=wa,*y=wb,*t;
    for(i=0; i<m; i++)  wsf[i]=0;
    for(i=0; i<=n; i++)  wsf[x[i]=r[i]]++;
    for(i=1; i<m; i++)  wsf[i]+=wsf[i-1];
    for(i=n; i>=0; i--)  sa[--wsf[x[i]]]=i;
    p=1;
    j=1;
    for(; p<=n; j*=2,m=p)
    {
        for(p=0,i=n+1-j; i<=n; i++)  y[p++]=i;
        for(i=0; i<=n; i++)  if(sa[i]>=j)  y[p++]=sa[i]-j;
        for(i=0; i<=n; i++)  wv[i]=x[y[i]];
        for(i=0; i<m; i++)  wsf[i]=0;
        for(i=0; i<=n; i++)  wsf[wv[i]]++;
        for(i=1; i<m; i++)  wsf[i]+=wsf[i-1];
        for(i=n; i>=0; i--)  sa[--wsf[wv[i]]]=y[i];
        t=x;
        x=y;
        y=t;
        x[sa[0]]=0;
        for(p=1,i=1; i<=n; i++)
            x[sa[i]]=cmp(y,sa[i-1],sa[i],j)? p-1:p++;
    }
}

void getheight(int *r,int n)
{
    int i,j,k=0;
    for(i=1; i<=n; i++)  rank[sa[i]]=i;
    for(i=0; i<n; i++)
    {
        if(k)
            k--;
        else
            k=0;
        j=sa[rank[i]-1];
        while(r[i+k]==r[j+k])
            k++;
        height[rank[i]]=k;
    }
}

int main()
{
    int len,n;
    while(~scanf("%s%s",str1,str2))
    {
        n=0;
        len=strlen(str1);
        for(int i=0;i<len;i++)
            s[n++]=str1[i]-'a'+1;
        s[n++]=30;
        len=strlen(str2);
        for(int i=0;i<len;i++)
            s[n++]=str2[i]-'a'+1;
        s[n]=0;//两串拼接末尾添0
        getsa(s,sa,n,31);
        getheight(s,n);
        len=strlen(str1);
        int ans=0;
        for(int i=2;i<=n-1;i++)
        {
            if(height[i]>ans)
            {
                if(sa[i-1]>=0&&sa[i-1]<len&&sa[i]>len)
                    ans=max(ans,height[i]);
                if(sa[i]>=0&&sa[i]<len&&sa[i-1]>len)
                    ans=max(ans,height[i]);
            }
        }
        printf("%d\n",ans);
    }

    return 0;
}

Hash做法

由于没有给定长度,要求长度,这时就要想是否具有二分的性质,发现答案是具有二分性质的,所以我们可以二分答案,然后把A串中所有出现过的hash值放进一个数组,sort一下,然后对于每个B串产生的hash用lower_bound查询是否出现过,若出现过则直接返回true.复杂度是o(lenlog(len)log(len)),跑了1250ms,用map判断是否出现过就会超时,这暂且作为hash的一个优化方式吧。
POJ2774代码

#include<stdio.h>
#include<iostream>
#include<algorithm>
#include<string.h>
#include<map>
using namespace std;
typedef unsigned long long ull;
const int maxn = 1e6+5;
ull xp[maxn],hash_1[maxn],hash_2[maxn];
ull a[maxn];
int len1,len2;
void init()
{
    xp[0]=1;
    for(int i=1;i<maxn;i++)
        xp[i]=xp[i-1]*13331;
}
ull get_hash(int i,int L,ull hash_[])
{
    return hash_[i]-hash_[i+L]*xp[L];
}
int make_hash(char str[],ull hash_[])
{
    int len=strlen(str);
    hash_[len]=0;
    for(int i=len-1;i>=0;i--)
    {
        hash_[i]=hash_[i+1]*13331+(str[i]-'a'+1);
    }
    return len;
}
char str[maxn],str2[maxn];
bool check(int L)
{
    int cnt=0;
    for(int i=0;i<len1-L+1;i++)
    {
        a[cnt++]=get_hash(i,L,hash_1);
    }
    sort(a,a+cnt);
    for(int i=0;i<len2-L+1;i++)
    {
        ull tmp=get_hash(i,L,hash_2);
        int pos=lower_bound(a,a+cnt,tmp)-a;
        if(a[pos]==tmp) return true;
    }
    return false;
}
int main()
{
    init();
    while( scanf("%s%s",str,str2)!=EOF)
    {
        len1=make_hash(str,hash_1);
        len2=make_hash(str2,hash_2);
        int l=0,r=min(len1,len2),mid;
        while(l<=r)
        {
            mid=(l+r)>>1;
            if(check(mid)) l=mid+1;
            else r=mid-1;
        }
        printf("%d\n",r);
    }
    return 0;
}
阅读更多
相关热词: poj2774
上一篇后缀数组模板及简单的入门题总结
下一篇【POJ3450】后缀数组+二分
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

关闭
关闭
关闭