POJ2778
本题题意是给你一个字符集和一个长度m,还有一些敏感串,求出字符集构造出的长度为m的字符串中不包含敏感串的串的个数。
我们用到AC自动机的性质,想象一下如果从len=k向len=k+1转移,AC自动机上每个状态之间有多少种转移方法,就可以构造出对应的转移矩阵,再利用矩阵快速幂就可以求解。在构造转移矩阵的时候,要注意如果某串的后缀是敏感串,也是不可以转移的。
转移矩阵
Tn
T
n
T[i][j]
T
[
i
]
[
j
]
即表示i状态转移n次到达j状态的方案数,所以最后统计第一行的和,也就是所有初始状态转移n次得到的状态之和了。
你可能会想到一些原本不在AC自动机上面的状态是不是没有被算,其实所有不在AC自动机上的状态都是不被约束的状态,他们是和从root开始的状态相同的,我们在构建fail的时候就把这些串下标都存为root,所以直接算转移矩阵的时候直接转移就好了。(慢慢理解,慢慢理解
POJ2778代码
#include<stdio.h>
#include<algorithm>
#include<string.h>
#include<iostream>
#include<queue>
#include<set>
#include<map>
using namespace std;
#define dbg(x) cout<<#x<<" "<<x<<endl
typedef unsigned long long ll;
const int maxn = 2e6+5;
const int Mod=100000;
map<char,int> mp;
struct ACTrie
{
int tree[maxn][4],fail[maxn];
int end_[maxn];
int root,num,cnt;
int newnode()
{
for(int i=0;i<4;i++)
tree[cnt][i]=-1;
end_[cnt]=0;
return cnt++;
}
void init()
{
cnt=0;
num=0;
root=newnode();
}
void insert_(char str[])
{
int pos=root;
int len=strlen(str);
for(int i=0;i<len;i++)
{
int id=mp[str[i]];
if(tree[pos][id]==-1) tree[pos][id]=newnode();
pos=tree[pos][id];
}
end_[pos]=1;
}
void build()
{
queue<int> que;
fail[root]=root;
for(int i=0;i<4;i++)
{
if(tree[root][i]==-1) tree[root][i]=root;
else
{
fail[tree[root][i]]=root;
que.push(tree[root][i]);
}
}
while(!que.empty())
{
int now=que.front();
que.pop();
for(int i=0;i<4;i++)
{
if(tree[now][i]==-1) tree[now][i]=tree[fail[now]][i];
else
{
fail[tree[now][i]]=tree[fail[now]][i];
que.push(tree[now][i]);
}
end_[tree[now][i]]|=end_[tree[fail[now]][i]];//注意这个过程,若该字符串的后缀为病毒串,则该字符串也是病毒串。
}
}
}
};
ACTrie ac;
struct mat
{
ll jz[110][110];
};
mat make_mat()
{
mat res;
memset(res.jz,0,sizeof(res.jz));
for(int i=0;i<ac.cnt;i++)
{
if(ac.end_[i]) continue;//转移之前为病毒串不统计
for(int j=0;j<4;j++)
{
if(ac.end_[ac.tree[i][j]]) continue;//转移之后为病毒串不统计
++res.jz[i][ac.tree[i][j]];
}
}
return res;
}
mat mat_mul(mat x,mat y)
{
mat res;
memset(res.jz,0,sizeof(res.jz));
for(int i=0;i<ac.cnt;i++)
for(int j=0;j<ac.cnt;j++)
for(int k=0;k<ac.cnt;k++)
res.jz[i][j]=(res.jz[i][j]+x.jz[i][k]*y.jz[k][j]+Mod)%Mod;
return res;
}
ll power_mod (ll b)//.res是系数矩阵,ans是变换矩阵左->ans,右->res.
{
mat ans,res;
res=make_mat();
memset(ans.jz,0,sizeof(ans.jz));
for(int i=0;i<ac.cnt;i++)
ans.jz[i][i]=1;
while(b>0)
{
if(b&1) ans=mat_mul(res,ans);//所以应该系数矩阵在前ans,res);
b=b>>1;
res=mat_mul(res,res);
}
ll tmp=0;
for(int i=0;i<ac.cnt;i++)
tmp=(tmp+ans.jz[0][i]%Mod)%Mod;
return tmp;//返回指定位置元素
}
char str[11];
int main()
{
mp['A']=0;
mp['C']=1;
mp['T']=2;
mp['G']=3;
int n;
ll m;
while(scanf("%d%I64d",&n,&m)!=EOF)
{
ac.init();
while(n--)
{
scanf("%s",str);
ac.insert_(str);
}
ac.build();
printf("%I64d\n",power_mod(m));
}
return 0;
}