【HDU 1024 Max Sum Plus Plus】 DP+滚动数组优化

33 篇文章 0 订阅

HDU1024 最大M子段和
HDU1024
不太明白这个问题这么难竟然这么多的AC,这个题卡了很久最后去找了题解。
首先说一下题意,是给一个长度为n的序列,要求从序列出m个不相交的子段,使他们的和最大
n<=1000000
我们首先想一下最暴力的DP方案
dp[i][j]表示选取第j个数字的情况下,将前j个数字分成i组的最大子段和
所以可能的情况有两种
x1y1,x2y2...xiyinum[j] ① ( x 1 , y 1 ) , ( x 2 , y 2 ) . . . ( x i , y i , n u m [ j ] )

x1y1,x2y2...xi1yi1...num[j] ② ( x 1 , y 1 ) , ( x 2 , y 2 ) . . . ( x i − 1 , y i − 1 ) , . . . , ( n u m [ j ] ) ,其中yi-1是第k个数字
dp[i][j]=max(dp[i][j1],dp[i1][k])+num[j]k=[i1,j1] d p [ i ] [ j ] = m a x ( d p [ i ] [ j − 1 ] , d p [ i − 1 ] [ k ] ) + n u m [ j ] 其 中 k = [ i − 1 , j − 1 ]
首先发现dp[i][]只和dp[i-1][],dp[i]有关,所以这里可以滚动数组优化一下
dp[t][j]=max(dp[t][j1],dp[1t][k])+num[j]k=[i1,j1] d p [ t ] [ j ] = m a x ( d p [ t ] [ j − 1 ] , d p [ 1 − t ] [ k ] ) + n u m [ j ] 其 中 k = [ i − 1 , j − 1 ]
t=0||t=1 t = 0 | | t = 1 分 别 表 示 当 前 状 态 和 上 一 状 态
我们发现最终我们只想要 max(dp[1t][k]) m a x ( d p [ 1 − t ] [ k ] ) ,也就是上一个状态中的最大值,
所以我们用一个数组保存pre[j]就可以了,pre[j]表示不包括j的j之前的最大和
DP方程就变成了
dp[t][j]=max(dp[t][j1],pre[j1])+num[j] d p [ t ] [ j ] = m a x ( d p [ t ] [ j − 1 ] , p r e [ j − 1 ] ) + n u m [ j ]
所以这个时候t也是无用的了。
最终的状态转移方程就变为:
dp[j]=max(dp[j1],pre[j1])+num[j] d p [ j ] = m a x ( d p [ j − 1 ] , p r e [ j − 1 ] ) + n u m [ j ]
这道题充分考察了降维和滚动数组优化的巧妙性,要常回来品味一下
HDU1024代码

#include<stdio.h>
#include<iostream>
#include<algorithm>
using namespace std;
const int INF=0x3f3f3f3f;
const int maxn = 1e6+5;
int pre[maxn];
int dp[maxn];
int a[maxn];
int main()
{
    int n,m;
    while(scanf("%d%d",&m,&n)!=EOF)
    {
        for(int i=1;i<=n;i++) scanf("%d",&a[i]);
        for(int i=1;i<=n;i++) pre[i]=0;
        for(int i=1;i<=n;i++) dp[i]=0;
        int ans=-INF;
        for(int i=1;i<=m;i++)
        {
            ans=-INF;
            for(int j=i;j<=n;j++)
            {
                dp[j]=max(dp[j-1],pre[j-1])+a[j];
                pre[j-1]=ans;
                ans=max(ans,dp[j]);
            }
        }
        printf("%d\n",ans);
    }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值