【51NOD1405树的距离之和】 树形DP

24 篇文章 1 订阅
7 篇文章 0 订阅

51NOD1405树的距离之和
题意就是给定一棵无根树,假设它有n个节点,节点编号从1到n, 求任意两点之间的距离(最短路径)之和。
首先由于这里树上的距离都是1,所以祖先与子孙的距离就是深度之差,我们可以一次树形dp求出每个子树包含的点的个数,并统计每个节点的深度,这样所有点距离根节点的最短距离就是所有点的深度之和,之后我们想如何向下 D P DP DP,假设父亲的答案为 d p [ y ] dp[y] dp[y],儿子的答案为 d p [ x ] dp[x] dp[x],儿子的子树内节点个数为 n u m [ x ] num[x] num[x],若所有节点到y的最短距离之和为dp[y],则有 d p [ x ] = d p [ y ] − − n u m [ x ] + ( n − n u m [ x ] ) , B e c a u s e : x 子 树 内 的 点 距 离 和 − 1 , x 子 树 外 的 点 距 离 和 + 1 dp[x]=dp[y]--num[x]+(n-num[x]),Because:x子树内的点距离和-1,x子树外的点距离和+1 dp[x]=dp[y]num[x]+(nnum[x]),Becausex1x+1
代码

#include<stdio.h>
#include<iostream>
#include<algorithm>
using namespace std;
typedef long long ll;
const int maxn = 1e5+5;
int dept[maxn];
ll dp[maxn];
int num[maxn];
int n;
vector<int> v[maxn];
void dfs(int x,int rt,int dep)
{
    dept[x]=dep;
    num[x]=1;
    for(int i=0;i<v[x].size();i++)
    {
        int to=v[x][i];
        if(rt==to) continue;
        dfs(to,x,dep+1);
        num[x]+=num[to];
    }
    return ;
}
void dfs2(int x,int rt)
{
    for(int i=0;i<v[x].size();i++)
    {
        int to=v[x][i];
        if(rt==to) continue;
        dp[to]=dp[x]+n-2*num[to];
        dfs2(to,x);
    }
    return ;
}
int main()
{
    scanf("%d",&n);
    for(int i=1;i<n;i++)
    {
        int x,y;
        scanf("%d%d",&x,&y);
        v[x].push_back(y);
        v[y].push_back(x);
    }
    dfs(1,-1,0);
    for(int i=1;i<=n;i++) dp[1]+=dept[i];
    dfs2(1,-1);
    for(int i=1;i<=n;i++) cout<<dp[i]<<endl;
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值